Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization

  1. Valerie Michael
  2. Jack Goffinet
  3. John Pearson
  4. Fan Wang
  5. Katherine Tschida  Is a corresponding author
  6. Richard Mooney  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Duke University Medical Centre, United States
  3. Cornell University, United States

Abstract

Animals vocalize only in certain behavioral contexts, but the circuits and synapses through which forebrain neurons trigger or suppress vocalization remain unknown. Here we used transsynaptic tracing to identify two populations of inhibitory neurons that lie upstream of neurons in the periaqueductal gray that gate the production of ultrasonic vocalizations in mice (i.e., PAG-USV neurons). Activating PAG-projecting neurons in the preoptic hypothalamus (POAPAG neurons) elicited USV production in the absence of social cues. In contrast, activating PAG-projecting neurons in the central-medial boundary zone of the amygdala (AmgC/M-PAG neurons) transiently suppressed USV production without disrupting non-vocal social behavior. Optogenetics-assisted circuit mapping in brain slices revealed that POAPAG neurons directly inhibit PAG interneurons, which in turn inhibit PAG-USV neurons, whereas AmgC/M-PAG neurons directly inhibit PAG-USV neurons. These experiments identify two major forebrain inputs to the PAG that trigger and suppress vocalization, respectively, while also establishing the synaptic mechanisms through which these neurons exert opposing behavioral effects.

Data availability

Data have been deposited to the Duke Research Data Repository, under the DOI: 10.7924/r4cz38d99. We have deposited 4 types of data in the repository: (1) confocal microscope images of in situ hybridization, (2) audio and video files from the mice used in this study, (3) slice electrophysiology data, and (4) custom Matlab codes used for data analysis. All other data analyzed in this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Valerie Michael

    Neurobiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jack Goffinet

    Biostatistics and Bioinformatics, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6729-0848
  3. John Pearson

    Biostatistics & Bioinformatics, Neurobiology, Center for Cognitive Neuroscience, Psychology and Neuroscience, Electrical and Computer Engineering, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9876-7837
  4. Fan Wang

    Department of Neurobiology, Department of Cell Biology, Duke University Medical Centre, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine Tschida

    Psychology, Cornell University, Ithaca, United States
    For correspondence
    kat227@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8171-1722
  6. Richard Mooney

    Department of Neurobiology, Duke University Medical Center, Durham, United States
    For correspondence
    mooney@neuro.duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3308-1367

Funding

National Institutes of Health (R01 DC013826)

  • Richard Mooney

National Institutes of Health (R01 MH117778)

  • Fan Wang
  • Richard Mooney

National Institutes of Health (F31DC017879)

  • Valerie Michael

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted according to protocols approved by the Duke University Institutional Animal Care and Use Committee protocol (# A227-17-09).

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Publication history

  1. Received: September 29, 2020
  2. Accepted: December 28, 2020
  3. Accepted Manuscript published: December 29, 2020 (version 1)
  4. Version of Record published: January 8, 2021 (version 2)
  5. Version of Record updated: January 14, 2021 (version 3)

Copyright

© 2020, Michael et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,389
    Page views
  • 345
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valerie Michael
  2. Jack Goffinet
  3. John Pearson
  4. Fan Wang
  5. Katherine Tschida
  6. Richard Mooney
(2020)
Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization
eLife 9:e63493.
https://doi.org/10.7554/eLife.63493

Further reading

    1. Neuroscience
    Jessica H Kim et al.
    Research Article Updated

    Food intake behavior is regulated by a network of appetite-inducing and appetite-suppressing neuronal populations throughout the brain. The parasubthalamic nucleus (PSTN), a relatively unexplored population of neurons in the posterior hypothalamus, has been hypothesized to regulate appetite due to its connectivity with other anorexigenic neuronal populations and because these neurons express Fos, a marker of neuronal activation, following a meal. However, the individual cell types that make up the PSTN are not well characterized, nor are their functional roles in food intake behavior. Here, we identify and distinguish between two discrete PSTN subpopulations, those that express tachykinin-1 (PSTNTac1 neurons) and those that express corticotropin-releasing hormone (PSTNCRH neurons), and use a panel of genetically encoded tools in mice to show that PSTNTac1 neurons play an important role in appetite suppression. Both subpopulations increase activity following a meal and in response to administration of the anorexigenic hormones amylin, cholecystokinin (CCK), and peptide YY (PYY). Interestingly, chemogenetic inhibition of PSTNTac1, but not PSTNCRH neurons, reduces the appetite-suppressing effects of these hormones. Consistently, optogenetic and chemogenetic stimulation of PSTNTac1 neurons, but not PSTNCRH neurons, reduces food intake in hungry mice. PSTNTac1 and PSTNCRH neurons project to distinct downstream brain regions, and stimulation of PSTNTac1 projections to individual anorexigenic populations reduces food consumption. Taken together, these results reveal the functional properties and projection patterns of distinct PSTN cell types and demonstrate an anorexigenic role for PSTNTac1 neurons in the hormonal and central regulation of appetite.

    1. Neuroscience
    Nahoko Kuga et al.
    Research Article

    The medial prefrontal cortex and amygdala are involved in the regulation of social behavior and associated with psychiatric diseases but their detailed neurophysiological mechanisms at a network level remain unclear. We recorded local field potentials (LFPs) from the dorsal medial prefrontal cortex (dmPFC) and basolateral amygdala (BLA) while male mice engaged on social behavior. We found that in wild-type mice, both the dmPFC and BLA increased 4–7 Hz oscillation power and decreased 30–60 Hz power when they needed to attend to another target mouse. In mouse models with reduced social interactions, dmPFC 4–7 Hz power further increased especially when they exhibited social avoidance behavior. In contrast, dmPFC and BLA decreased 4–7 Hz power when wild-type mice socially approached a target mouse. Frequency-specific optogenetic manipulations replicating social approach-related LFP patterns restored social interaction behavior in socially deficient mice. These results demonstrate a neurophysiological substrate of the prefrontal cortex and amygdala related to social behavior and provide a unified pathophysiological understanding of neuronal population dynamics underlying social behavioral deficits.