1. Neuroscience
Download icon

Functional specialization within the inferior parietal lobes across cognitive domains

  1. Ole Numssen
  2. Danilo Bzdok  Is a corresponding author
  3. Gesa Hartwigsen  Is a corresponding author
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. Montreal Neurological Institute, Canada
  3. Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
Research Article
  • Cited 5
  • Views 2,300
  • Annotations
Cite this article as: eLife 2021;10:e63591 doi: 10.7554/eLife.63591


The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated functional specialization in the IPL supports some of the most distinctive human mental capacities.

Data availability

Preprocessed fMRI data and behavioral data are publicly available at the Open Science Framework doi:10.17605/OSF.IO/9NDHP .

The following data sets were generated
    1. Numssen O
    (2020) FuncSeg
    Open Science Framework, 9NDHP.

Article and author information

Author details

  1. Ole Numssen

    Lise Meitner Research Group Cognition and Plasticity"", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7164-2682
  2. Danilo Bzdok

    Department of Biomedical Engineering, Montreal Neurological Institute, Montreal, Canada
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
  3. Gesa Hartwigsen

    Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8084-1330


Deutsche Forschungsgemeinschaft (BZ2/4-1,BZ2/3-1,BZ2/2-1)

  • Danilo Bzdok

National Institutes of Health (R01AG068563A)

  • Danilo Bzdok

Deutsche Forschungsgemeinschaft (HA 6314/3-1,HA 6314/4-1)

  • Gesa Hartwigsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: The study was performed according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of the Medical Faculty of the University of Leipzig, Germany (282/16-eh). Written informed consent was obtained from all subjects before the experiment.

Reviewing Editor

  1. Dwight Kravitz, The George Washington University, United States

Publication history

  1. Received: September 30, 2020
  2. Accepted: March 1, 2021
  3. Accepted Manuscript published: March 2, 2021 (version 1)
  4. Version of Record published: March 10, 2021 (version 2)


© 2021, Numssen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,300
    Page views
  • 342
  • 5

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Valeria Oliva et al.
    Research Article

    Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) - rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans we used simultaneous whole brain-spinal cord pharmacological-fMRI (N=39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.

    1. Neuroscience
    Emil Kind et al.
    Research Article Updated

    Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.