Functional specialization within the inferior parietal lobes across cognitive domains

  1. Ole Numssen
  2. Danilo Bzdok  Is a corresponding author
  3. Gesa Hartwigsen  Is a corresponding author
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. Montreal Neurological Institute, Canada
  3. Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany

Abstract

The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated functional specialization in the IPL supports some of the most distinctive human mental capacities.

Data availability

Preprocessed fMRI data and behavioral data are publicly available at the Open Science Framework doi:10.17605/OSF.IO/9NDHP .

The following data sets were generated
    1. Numssen O
    (2020) FuncSeg
    Open Science Framework, 9NDHP.

Article and author information

Author details

  1. Ole Numssen

    Lise Meitner Research Group Cognition and Plasticity"", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7164-2682
  2. Danilo Bzdok

    Department of Biomedical Engineering, Montreal Neurological Institute, Montreal, Canada
    For correspondence
    danilo.bzdok@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
  3. Gesa Hartwigsen

    Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
    For correspondence
    hartwigsen@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8084-1330

Funding

Deutsche Forschungsgemeinschaft (BZ2/4-1,BZ2/3-1,BZ2/2-1)

  • Danilo Bzdok

National Institutes of Health (R01AG068563A)

  • Danilo Bzdok

Deutsche Forschungsgemeinschaft (HA 6314/3-1,HA 6314/4-1)

  • Gesa Hartwigsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dwight Kravitz, The George Washington University, United States

Ethics

Human subjects: The study was performed according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of the Medical Faculty of the University of Leipzig, Germany (282/16-eh). Written informed consent was obtained from all subjects before the experiment.

Version history

  1. Received: September 30, 2020
  2. Accepted: March 1, 2021
  3. Accepted Manuscript published: March 2, 2021 (version 1)
  4. Version of Record published: March 10, 2021 (version 2)

Copyright

© 2021, Numssen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,655
    views
  • 758
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ole Numssen
  2. Danilo Bzdok
  3. Gesa Hartwigsen
(2021)
Functional specialization within the inferior parietal lobes across cognitive domains
eLife 10:e63591.
https://doi.org/10.7554/eLife.63591

Share this article

https://doi.org/10.7554/eLife.63591

Further reading

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.

    1. Neuroscience
    Qiaoli Huang, Huan Luo
    Research Article

    Daily experiences often involve the processing of multiple sequences, yet storing them challenges the limited capacity of working memory (WM). To achieve efficient memory storage, relational structures shared by sequences would be leveraged to reorganize and compress information. Here, participants memorized a sequence of items with different colors and spatial locations and later reproduced the full color and location sequences one after another. Crucially, we manipulated the consistency between location and color sequence trajectories. First, sequences with consistent trajectories demonstrate improved memory performance and a trajectory correlation between reproduced color and location sequences. Second, sequences with consistent trajectories show neural reactivation of common trajectories, and display spontaneous replay of color sequences when recalling locations. Finally, neural reactivation correlates with WM behavior. Our findings suggest that a shared common structure is leveraged for the storage of multiple sequences through compressed encoding and neural replay, together facilitating efficient information organization in WM.