Functional specialization within the inferior parietal lobes across cognitive domains

  1. Ole Numssen
  2. Danilo Bzdok  Is a corresponding author
  3. Gesa Hartwigsen  Is a corresponding author
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. Montreal Neurological Institute, Canada
  3. Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany

Abstract

The inferior parietal lobe (IPL) is a key neural substrate underlying diverse mental processes, from basic attention to language and social cognition, that define human interactions. Its putative domain-global role appears to tie into poorly understood differences between cognitive domains in both hemispheres. Across attentional, semantic, and social cognitive tasks, our study explored functional specialization within the IPL. The task specificity of IPL subregion activity was substantiated by distinct predictive signatures identified by multivariate pattern-learning algorithms. Moreover, the left and right IPL exerted domain-specific modulation of effective connectivity among their subregions. Task-evoked functional interactions of the anterior and posterior IPL subregions involved recruitment of distributed cortical partners. While anterior IPL subregions were engaged in strongly lateralized coupling links, both posterior subregions showed more symmetric coupling patterns across hemispheres. Our collective results shed light on how under-appreciated functional specialization in the IPL supports some of the most distinctive human mental capacities.

Data availability

Preprocessed fMRI data and behavioral data are publicly available at the Open Science Framework doi:10.17605/OSF.IO/9NDHP .

The following data sets were generated
    1. Numssen O
    (2020) FuncSeg
    Open Science Framework, 9NDHP.

Article and author information

Author details

  1. Ole Numssen

    Lise Meitner Research Group Cognition and Plasticity"", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7164-2682
  2. Danilo Bzdok

    Department of Biomedical Engineering, Montreal Neurological Institute, Montreal, Canada
    For correspondence
    danilo.bzdok@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
  3. Gesa Hartwigsen

    Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
    For correspondence
    hartwigsen@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8084-1330

Funding

Deutsche Forschungsgemeinschaft (BZ2/4-1,BZ2/3-1,BZ2/2-1)

  • Danilo Bzdok

National Institutes of Health (R01AG068563A)

  • Danilo Bzdok

Deutsche Forschungsgemeinschaft (HA 6314/3-1,HA 6314/4-1)

  • Gesa Hartwigsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was performed according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of the Medical Faculty of the University of Leipzig, Germany (282/16-eh). Written informed consent was obtained from all subjects before the experiment.

Copyright

© 2021, Numssen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,833
    views
  • 781
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ole Numssen
  2. Danilo Bzdok
  3. Gesa Hartwigsen
(2021)
Functional specialization within the inferior parietal lobes across cognitive domains
eLife 10:e63591.
https://doi.org/10.7554/eLife.63591

Share this article

https://doi.org/10.7554/eLife.63591

Further reading

    1. Neuroscience
    Steven S Hou, Yuya Ikegawa ... Masato Maesako
    Tools and Resources

    γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720–670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential ‘cell non-autonomous’ regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.

    1. Neuroscience
    Francesco Longo
    Insight

    The neurotransmitter dopamine helps form long-term memories by increasing the production of proteins through a unique signaling pathway.