Genome-wide CRISPR screen identifies non-canonical NF-κB signaling as a regulator of density-dependent proliferation

  1. Maria Fomicheva
  2. Ian G Macara  Is a corresponding author
  1. Vanderbilt University School of Medicine, United States


Epithelial cells possess intrinsic mechanisms to maintain an appropriate cell density for normal tissue morphogenesis and homeostasis. Defects in such mechanisms likely contribute to hyperplasia and cancer initiation. To identify genes that regulate the density-dependent proliferation of murine mammary epithelial cells, we developed a fluorescence-activated cell sorting assay based on FUCCI, which marks different stages of the cell cycle with distinct fluorophores. Using this powerful assay, we performed a genome-wide CRISPR/Cas9 knockout screen, selecting for cells that proliferate normally at low density but continue to divide at high density. Unexpectedly, one top hit was Traf3, a negative regulator of NF-κB signaling that has never previously been linked to density-dependent proliferation. We demonstrate that loss of Traf3 specifically activates non-canonical NF-κB signaling. This in turn triggers an innate immune response and drives cell division independently of known density-dependent proliferation mechanisms, including YAP/TAZ signaling and cyclin kinase inhibitors, by blocking entry into quiescence.

Data availability

Sequencing data have been deposited in GEO under accession code GSE147767All other data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Maria Fomicheva

    Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ian G Macara

    Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8546-5357


National Cancer Institute (R35 CA132898)

  • Maria Fomicheva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Duojia Pan, UT Southwestern Medical Center and HHMI, United States


Animal experimentation: All mouse experimental procedures were approved by Vanderbilt Institutional Animal Care and Use Committee; IACUC protocol number M1800045, Exp: 04/26/2021.

Version history

  1. Received: September 30, 2020
  2. Accepted: November 6, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: November 24, 2020 (version 2)


© 2020, Fomicheva & Macara

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 4,819
  • 524
  • 8

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Fomicheva
  2. Ian G Macara
Genome-wide CRISPR screen identifies non-canonical NF-κB signaling as a regulator of density-dependent proliferation
eLife 9:e63603.

Share this article

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.