Control and regulation of acetate overflow in Escherichia coli

  1. Pierre Millard  Is a corresponding author
  2. Brice Enjalbert
  3. Sandrine Uttenweiler-Joseph
  4. Jean-Charles Portais
  5. Fabien Letisse
  1. TBI, Universite de Toulouse, CNRS, INRAE, INSA, France
  2. Université de Toulouse, France

Abstract

Overflow metabolism refers to the production of seemingly wasteful by-products by cells during growth on glucose even when oxygen is abundant. Two theories have been proposed to explain acetate overflow in Escherichia coli – global control of the central metabolism and local control of the acetate pathway – but neither accounts for all observations. Here, we develop a kinetic model of E. coli metabolism that quantitatively accounts for observed behaviors and successfully predicts the response of E. coli to new perturbations. We reconcile these theories and clarify the origin, control and regulation of the acetate flux. We also find that, in turns, acetate regulates glucose metabolism by coordinating the expression of glycolytic and TCA genes. Acetate should not be considered a wasteful end-product since it is also a co-substrate and a global regulator of glucose metabolism in E. coli. This has broad implications for our understanding of overflow metabolism.

Data availability

Transcriptomics data have been deposited in ArrayExpress under accession code E-MTAB-9086.The calibrated kinetic model has been deposited in BioModels database under accession code MODEL2005050001.All the scripts used to perform the simulations, to analyse the models and to generate the figures are provided in the supporting files and at https://github.com/MetaSys-LISBP/acetate_regulationAll data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Pierre Millard

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    For correspondence
    millard@insa-toulouse.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8136-9963
  2. Brice Enjalbert

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandrine Uttenweiler-Joseph

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Charles Portais

    LISBP, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Letisse

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (MICA-JC)

  • Pierre Millard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Millard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,457
    views
  • 1,028
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre Millard
  2. Brice Enjalbert
  3. Sandrine Uttenweiler-Joseph
  4. Jean-Charles Portais
  5. Fabien Letisse
(2021)
Control and regulation of acetate overflow in Escherichia coli
eLife 10:e63661.
https://doi.org/10.7554/eLife.63661

Share this article

https://doi.org/10.7554/eLife.63661

Further reading

    1. Computational and Systems Biology
    Matthew Millard, David W Franklin, Walter Herzog
    Research Article

    The force developed by actively lengthened muscle depends on different structures across different scales of lengthening. For small perturbations, the active response of muscle is well captured by a linear-time-invariant (LTI) system: a stiff spring in parallel with a light damper. The force response of muscle to longer stretches is better represented by a compliant spring that can fix its end when activated. Experimental work has shown that the stiffness and damping (impedance) of muscle in response to small perturbations is of fundamental importance to motor learning and mechanical stability, while the huge forces developed during long active stretches are critical for simulating and predicting injury. Outside of motor learning and injury, muscle is actively lengthened as a part of nearly all terrestrial locomotion. Despite the functional importance of impedance and active lengthening, no single muscle model has all these mechanical properties. In this work, we present the viscoelastic-crossbridge active-titin (VEXAT) model that can replicate the response of muscle to length changes great and small. To evaluate the VEXAT model, we compare its response to biological muscle by simulating experiments that measure the impedance of muscle, and the forces developed during long active stretches. In addition, we have also compared the responses of the VEXAT model to a popular Hill-type muscle model. The VEXAT model more accurately captures the impedance of biological muscle and its responses to long active stretches than a Hill-type model and can still reproduce the force-velocity and force-length relations of muscle. While the comparison between the VEXAT model and biological muscle is favorable, there are some phenomena that can be improved: the low frequency phase response of the model, and a mechanism to support passive force enhancement.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kara Schmidlin, Sam Apodaca ... Kerry Geiler-Samerotte
    Research Article

    There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.