Control and regulation of acetate overflow in Escherichia coli

  1. Pierre Millard  Is a corresponding author
  2. Brice Enjalbert
  3. Sandrine Uttenweiler-Joseph
  4. Jean-Charles Portais
  5. Fabien Letisse
  1. TBI, Universite de Toulouse, CNRS, INRAE, INSA, France
  2. Université de Toulouse, France

Abstract

Overflow metabolism refers to the production of seemingly wasteful by-products by cells during growth on glucose even when oxygen is abundant. Two theories have been proposed to explain acetate overflow in Escherichia coli – global control of the central metabolism and local control of the acetate pathway – but neither accounts for all observations. Here, we develop a kinetic model of E. coli metabolism that quantitatively accounts for observed behaviors and successfully predicts the response of E. coli to new perturbations. We reconcile these theories and clarify the origin, control and regulation of the acetate flux. We also find that, in turns, acetate regulates glucose metabolism by coordinating the expression of glycolytic and TCA genes. Acetate should not be considered a wasteful end-product since it is also a co-substrate and a global regulator of glucose metabolism in E. coli. This has broad implications for our understanding of overflow metabolism.

Data availability

Transcriptomics data have been deposited in ArrayExpress under accession code E-MTAB-9086.The calibrated kinetic model has been deposited in BioModels database under accession code MODEL2005050001.All the scripts used to perform the simulations, to analyse the models and to generate the figures are provided in the supporting files and at https://github.com/MetaSys-LISBP/acetate_regulationAll data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Pierre Millard

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    For correspondence
    millard@insa-toulouse.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8136-9963
  2. Brice Enjalbert

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandrine Uttenweiler-Joseph

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Charles Portais

    LISBP, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Letisse

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (MICA-JC)

  • Pierre Millard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Doebeli, University of British Columbia, Canada

Publication history

  1. Received: October 1, 2020
  2. Accepted: March 12, 2021
  3. Accepted Manuscript published: March 15, 2021 (version 1)
  4. Version of Record published: April 4, 2021 (version 2)

Copyright

© 2021, Millard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,098
    Page views
  • 741
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre Millard
  2. Brice Enjalbert
  3. Sandrine Uttenweiler-Joseph
  4. Jean-Charles Portais
  5. Fabien Letisse
(2021)
Control and regulation of acetate overflow in Escherichia coli
eLife 10:e63661.
https://doi.org/10.7554/eLife.63661

Further reading

    1. Computational and Systems Biology
    David Elkind, Hannah Hochgerner ... Amit Zeisel
    Research Article Updated

    The mouse brain is by far the most intensively studied among mammalian brains, yet basic measures of its cytoarchitecture remain obscure. For example, quantifying cell numbers, and the interplay of sex, strain, and individual variability in cell density and volume is out of reach for many regions. The Allen Mouse Brain Connectivity project produces high-resolution full brain images of hundreds of brains. Although these were created for a different purpose, they reveal details of neuroanatomy and cytoarchitecture. Here, we used this population to systematically characterize cell density and volume for each anatomical unit in the mouse brain. We developed a DNN-based segmentation pipeline that uses the autofluorescence intensities of images to segment cell nuclei even within the densest regions, such as the dentate gyrus. We applied our pipeline to 507 brains of males and females from C57BL/6J and FVB.CD1 strains. Globally, we found that increased overall brain volume does not result in uniform expansion across all regions. Moreover, region-specific density changes are often negatively correlated with the volume of the region; therefore, cell count does not scale linearly with volume. Many regions, including layer 2/3 across several cortical areas, showed distinct lateral bias. We identified strain-specific or sex-specific differences. For example, males tended to have more cells in extended amygdala and hypothalamic regions (MEA, BST, BLA, BMA, and LPO, AHN) while females had more cells in the orbital cortex (ORB). Yet, inter-individual variability was always greater than the effect size of a single qualifier. We provide the results of this analysis as an accessible resource for the community.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Magdalena L Russell, Noah Simon ... Frederick A Matsen IV
    Research Article

    To appropriately defend against a wide array of pathogens, humans somatically generate highly diverse repertoires of B cell and T cell receptors (BCRs and TCRs) through a random process called V(D)J recombination. Receptor diversity is achieved during this process through both the combinatorial assembly of V(D)J-genes and the junctional deletion and insertion of nucleotides. While the Artemis protein is often regarded as the main nuclease involved in V(D)J recombination, the exact mechanism of nucleotide trimming is not understood. Using a previously published TCRβ repertoire sequencing data set, we have designed a flexible probabilistic model of nucleotide trimming that allows us to explore various mechanistically interpretable sequence-level features. We show that local sequence context, length, and GC nucleotide content in both directions of the wider sequence, together, can most accurately predict the trimming probabilities of a given V-gene sequence. Because GC nucleotide content is predictive of sequence-breathing, this model provides quantitative statistical evidence regarding the extent to which double-stranded DNA may need to be able to breathe for trimming to occur. We also see evidence of a sequence motif that appears to get preferentially trimmed, independent of GC-content-related effects. Further, we find that the inferred coefficients from this model provide accurate prediction for V- and J-gene sequences from other adaptive immune receptor loci. These results refine our understanding of how the Artemis nuclease may function to trim nucleotides during V(D)J recombination and provide another step toward understanding how V(D)J recombination generates diverse receptors and supports a powerful, unique immune response in healthy humans.