Control and regulation of acetate overflow in Escherichia coli

  1. Pierre Millard  Is a corresponding author
  2. Brice Enjalbert
  3. Sandrine Uttenweiler-Joseph
  4. Jean-Charles Portais
  5. Fabien Letisse
  1. TBI, Universite de Toulouse, CNRS, INRAE, INSA, France
  2. Université de Toulouse, France

Abstract

Overflow metabolism refers to the production of seemingly wasteful by-products by cells during growth on glucose even when oxygen is abundant. Two theories have been proposed to explain acetate overflow in Escherichia coli – global control of the central metabolism and local control of the acetate pathway – but neither accounts for all observations. Here, we develop a kinetic model of E. coli metabolism that quantitatively accounts for observed behaviors and successfully predicts the response of E. coli to new perturbations. We reconcile these theories and clarify the origin, control and regulation of the acetate flux. We also find that, in turns, acetate regulates glucose metabolism by coordinating the expression of glycolytic and TCA genes. Acetate should not be considered a wasteful end-product since it is also a co-substrate and a global regulator of glucose metabolism in E. coli. This has broad implications for our understanding of overflow metabolism.

Data availability

Transcriptomics data have been deposited in ArrayExpress under accession code E-MTAB-9086.The calibrated kinetic model has been deposited in BioModels database under accession code MODEL2005050001.All the scripts used to perform the simulations, to analyse the models and to generate the figures are provided in the supporting files and at https://github.com/MetaSys-LISBP/acetate_regulationAll data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Pierre Millard

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    For correspondence
    millard@insa-toulouse.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8136-9963
  2. Brice Enjalbert

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandrine Uttenweiler-Joseph

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Jean-Charles Portais

    LISBP, Université de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Letisse

    Systems biology, TBI, Universite de Toulouse, CNRS, INRAE, INSA, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (MICA-JC)

  • Pierre Millard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Doebeli, University of British Columbia, Canada

Version history

  1. Received: October 1, 2020
  2. Accepted: March 12, 2021
  3. Accepted Manuscript published: March 15, 2021 (version 1)
  4. Version of Record published: April 4, 2021 (version 2)

Copyright

© 2021, Millard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,842
    views
  • 953
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre Millard
  2. Brice Enjalbert
  3. Sandrine Uttenweiler-Joseph
  4. Jean-Charles Portais
  5. Fabien Letisse
(2021)
Control and regulation of acetate overflow in Escherichia coli
eLife 10:e63661.
https://doi.org/10.7554/eLife.63661

Share this article

https://doi.org/10.7554/eLife.63661

Further reading

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.