1. Developmental Biology
  2. Neuroscience
Download icon

Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors

  1. Gerrit Cornelis Beekhof
  2. Catarina Osório
  3. Joshua J White
  4. Scott van Zoomeren
  5. Hannah van der Stok
  6. Bilian Xiong
  7. Ingo HMS Nettersheim
  8. Willem Ashwin Mak
  9. Marit Runge
  10. Francesca Romana Fiocchi
  11. Henk-Jan Boele
  12. Freek E Hoebeek
  13. Martijn Schonewille  Is a corresponding author
  1. Erasmus Medical Center, Netherlands
  2. King's College London, United Kingdom
  3. Baylor College of Medicine, United States
Research Article
  • Cited 2
  • Views 1,551
  • Annotations
Cite this article as: eLife 2021;10:e63668 doi: 10.7554/eLife.63668

Abstract

Distinct populations of Purkinje cells (PCs) with unique molecular and connectivity features are at the core of the modular organization of the cerebellum. Previously, we showed that firing activity of Purkinje cells differs between ZebrinII-positive (Z+) and -negative (Z−) cerebellar modules (Zhou et al., 2014; Wu et al., 2019). Here, we investigate the timing and extent of PC differentiation during development in mice. We found that several features of PCs, including activity levels, dendritic arborisation, axonal shape and climbing fiber input, develop differentially between nodular and anterior PC populations. Although all PCs show a particularly rapid development in the second postnatal week, anterior PCs typically have a prolonged physiological and dendritic maturation. In line herewith, younger mice exhibit attenuated anterior-dependent eyeblink conditioning, but faster nodular-dependent compensatory eye movement adaptation. Our results indicate that specific cerebellar regions have unique developmental timelines which match with their related, specific forms of cerebellum-dependent behaviors.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gerrit Cornelis Beekhof

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3038-5023
  2. Catarina Osório

    Department of Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5228-0599
  3. Joshua J White

    Pathology and Immunology, Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Scott van Zoomeren

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Hannah van der Stok

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Bilian Xiong

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Ingo HMS Nettersheim

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5207-5328
  8. Willem Ashwin Mak

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Marit Runge

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Francesca Romana Fiocchi

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Henk-Jan Boele

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Freek E Hoebeek

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Martijn Schonewille

    Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
    For correspondence
    m.schonewille@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2675-1393

Funding

H2020 European Research Council (ERC-Stg #680235)

  • Martijn Schonewille

ZonMw (ZonMW-451001027)

  • Catarina Osório

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (#016.121.346)

  • Freek E Hoebeek

ZonMw (#91210067)

  • Freek E Hoebeek

C.J. Vaillant Fund

  • Freek E Hoebeek

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (016.Veni.192.270)

  • Joshua J White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed under a project license approved by the Dutch Central Committee for Animal Experiments (CCD, AVD #101002015273). Each experiment was separately verified and approved by the Animal Welfare Body (IvD/AWB, various work protocols). All surgeries were performed under isoflurane anesthesia combined with local anesthetics and analgesics in an effort to minimize suffering.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Publication history

  1. Received: October 1, 2020
  2. Accepted: May 10, 2021
  3. Accepted Manuscript published: May 11, 2021 (version 1)
  4. Version of Record published: June 11, 2021 (version 2)

Copyright

© 2021, Beekhof et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,551
    Page views
  • 263
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Benoit Roch et al.
    Research Article Updated

    We developed an Xrcc4M61R separation of function mouse line to overcome the embryonic lethality of Xrcc4-deficient mice. XRCC4M61R protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA ligase IV. X4M61R mice, which are DNA repair deficient, phenocopy the Nhej1-/- (known as Xlf -/-) setting with a minor impact on the development of the adaptive immune system. The core non-homologous end-joining (NHEJ) DNA repair factor XRCC4 is therefore not mandatory for V(D)J recombination aside from its role in stabilizing DNA ligase IV. In contrast, Xrcc4M61R mice crossed on Paxx-/-, Nhej1-/-, or Atm-/- backgrounds are severely immunocompromised, owing to aborted V(D)J recombination as in Xlf-Paxx and Xlf-Atm double Knock Out (DKO) settings. Furthermore, massive apoptosis of post-mitotic neurons causes embryonic lethality of Xrcc4M61R -Nhej1-/- double mutants. These in vivo results reveal new functional interplays between XRCC4 and PAXX, ATM and Xlf in mouse development and provide new insights into the understanding of the clinical manifestations of human XRCC4-deficient condition, in particular its absence of immune deficiency.

    1. Cell Biology
    2. Developmental Biology
    Deepika Sharma et al.
    Research Article

    Osteoblast differentiation is sequentially characterized by high rates of proliferation followed by increased protein and matrix synthesis, processes that require substantial amino acid acquisition and production. How osteoblasts obtain or maintain intracellular amino acid production is poorly understood. Here we identify SLC1A5 as a critical amino acid transporter during bone development. Using a genetic and metabolomic approach, we show SLC1A5 acts cell autonomously to regulate protein synthesis and osteoblast differentiation. SLC1A5 provides both glutamine and asparagine which are essential for osteoblast differentiation. Mechanistically, glutamine and to a lesser extent asparagine support amino acid biosynthesis. Thus, osteoblasts depend on Slc1a5 to provide glutamine and asparagine, which are subsequently used to produce non-essential amino acids and support osteoblast differentiation and bone development.