Stem cell transplantation rescued a primary open-angle glaucoma mouse model
Abstract
Glaucoma is a leading cause of irreversible blindness. In this study, we investigated if exogenous stem cells are able to rescue a glaucoma mouse model with transgenic myocilin Y437H mutation and explored the possible mechanisms. Human trabecular meshwork stem cells (TMSCs) were intracamerally transplanted which reduced mouse intraocular pressure, increased outflow facility, protected the retinal ganglion cells and preserved their function. TMSC transplantation also significantly increased the TM cellularity, promoted myocilin secretion from TM cells into the aqueous humor to reduce endoplasmic reticulum stress, repaired the TM tissue with extracellular matrix modulation and ultrastructural restoration. Co-culturing TMSCs with myocilin mutant TM cells in vitro promoted TMSCs differentiating into phagocytic functional TM cells. RNA sequencing revealed that TMSCs had upregulated genes related to TM regeneration and neuroprotection. Our results uncovered therapeutic potential of TMSCs for curing glaucoma and elucidated possible mechanisms by which TMSCs achieve the treatment effect.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 9.
Article and author information
Author details
Funding
National Eye Institute (EY025643)
- Yiqin Du
National Eye Institute (P30-EY008098)
- Yiqin Du
Research to Prevent Blindness
- Yiqin Du
Eye and Ear Foundation of Pittsburgh
- Yiqin Du
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All the experiments conducted on the animals were approved by the University of Pittsburgh Institutional Animal Care (protocol 18022317) and Use Committee and complied with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Human cell culture was approved by the Committee for Oversignt of Research and Clinical Training Involving Decedents (CORID No. 161).
Copyright
© 2021, Xiong et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,810
- views
-
- 279
- downloads
-
- 27
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Stem Cells and Regenerative Medicine
An enzyme known as caspase, which initiates apoptosis, has a central role in the regeneration of cells and repair of tissue that can occur after necrosis.
-
- Stem Cells and Regenerative Medicine
By inhibiting receptor-ligand interactions in sebaceous glands, antibodies may be able to treat certain skin conditions.