Stem cell transplantation rescued a primary open-angle glaucoma mouse model

  1. Siqi Xiong
  2. Ajay Kumar
  3. Shenghe Tian
  4. Eman E Taher
  5. Enzhi Yang
  6. Paul R Kinchington
  7. Xiaobo Xia
  8. Yiqin Du  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Xiangya Hospital, Central South University, China

Abstract

Glaucoma is a leading cause of irreversible blindness. In this study, we investigated if exogenous stem cells are able to rescue a glaucoma mouse model with transgenic myocilin Y437H mutation and explored the possible mechanisms. Human trabecular meshwork stem cells (TMSCs) were intracamerally transplanted which reduced mouse intraocular pressure, increased outflow facility, protected the retinal ganglion cells and preserved their function. TMSC transplantation also significantly increased the TM cellularity, promoted myocilin secretion from TM cells into the aqueous humor to reduce endoplasmic reticulum stress, repaired the TM tissue with extracellular matrix modulation and ultrastructural restoration. Co-culturing TMSCs with myocilin mutant TM cells in vitro promoted TMSCs differentiating into phagocytic functional TM cells. RNA sequencing revealed that TMSCs had upregulated genes related to TM regeneration and neuroprotection. Our results uncovered therapeutic potential of TMSCs for curing glaucoma and elucidated possible mechanisms by which TMSCs achieve the treatment effect.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 9.

Article and author information

Author details

  1. Siqi Xiong

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  2. Ajay Kumar

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3412-1823
  3. Shenghe Tian

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  4. Eman E Taher

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  5. Enzhi Yang

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  6. Paul R Kinchington

    Ophthalmology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1901-9970
  7. Xiaobo Xia

    Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    No competing interests declared.
  8. Yiqin Du

    Ophthalmology & Developmental Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    duy@upmc.edu
    Competing interests
    Yiqin Du, The University of Pittsburgh has a competing interest with a patent named trabecular meshwork stem cells" with Yiqin Du as one of the inventors.".
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4330-0957

Funding

National Eye Institute (EY025643)

  • Yiqin Du

National Eye Institute (P30-EY008098)

  • Yiqin Du

Research to Prevent Blindness

  • Yiqin Du

Eye and Ear Foundation of Pittsburgh

  • Yiqin Du

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Pera, The Jackson Laboratory, United States

Ethics

Animal experimentation: All the experiments conducted on the animals were approved by the University of Pittsburgh Institutional Animal Care (protocol 18022317) and Use Committee and complied with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Human cell culture was approved by the Committee for Oversignt of Research and Clinical Training Involving Decedents (CORID No. 161).

Version history

  1. Received: October 2, 2020
  2. Accepted: January 22, 2021
  3. Accepted Manuscript published: January 28, 2021 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)

Copyright

© 2021, Xiong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,657
    views
  • 270
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siqi Xiong
  2. Ajay Kumar
  3. Shenghe Tian
  4. Eman E Taher
  5. Enzhi Yang
  6. Paul R Kinchington
  7. Xiaobo Xia
  8. Yiqin Du
(2021)
Stem cell transplantation rescued a primary open-angle glaucoma mouse model
eLife 10:e63677.
https://doi.org/10.7554/eLife.63677

Share this article

https://doi.org/10.7554/eLife.63677

Further reading

    1. Stem Cells and Regenerative Medicine
    Magali Seguret, Patricia Davidson ... Jean-Sébastien Hulot
    Research Article

    We developed a 96-well plate assay which allows fast, reproducible, and high-throughput generation of 3D cardiac rings around a deformable optically transparent hydrogel (polyethylene glycol [PEG]) pillar of known stiffness. Human induced pluripotent stem cell-derived cardiomyocytes, mixed with normal human adult dermal fibroblasts in an optimized 3:1 ratio, self-organized to form ring-shaped cardiac constructs. Immunostaining showed that the fibroblasts form a basal layer in contact with the glass, stabilizing the muscular fiber above. Tissues started contracting around the pillar at D1 and their fractional shortening increased until D7, reaching a plateau at 25±1%, that was maintained up to 14 days. The average stress, calculated from the compaction of the central pillar during contractions, was 1.4±0.4 mN/mm2. The cardiac constructs recapitulated expected inotropic responses to calcium and various drugs (isoproterenol, verapamil) as well as the arrhythmogenic effects of dofetilide. This versatile high-throughput assay allows multiple in situ mechanical and structural readouts.

    1. Stem Cells and Regenerative Medicine
    Shintaro Watanuki, Hiroshi Kobayashi ... Keiyo Takubo
    Research Article

    Metabolic pathways are plastic and rapidly change in response to stress or perturbation. Current metabolic profiling techniques require lysis of many cells, complicating the tracking of metabolic changes over time after stress in rare cells such as hematopoietic stem cells (HSCs). Here, we aimed to identify the key metabolic enzymes that define differences in glycolytic metabolism between steady-state and stress conditions in murine HSCs and elucidate their regulatory mechanisms. Through quantitative 13C metabolic flux analysis of glucose metabolism using high-sensitivity glucose tracing and mathematical modeling, we found that HSCs activate the glycolytic rate-limiting enzyme phosphofructokinase (PFK) during proliferation and oxidative phosphorylation (OXPHOS) inhibition. Real-time measurement of ATP levels in single HSCs demonstrated that proliferative stress or OXPHOS inhibition led to accelerated glycolysis via increased activity of PFKFB3, the enzyme regulating an allosteric PFK activator, within seconds to meet ATP requirements. Furthermore, varying stresses differentially activated PFKFB3 via PRMT1-dependent methylation during proliferative stress and via AMPK-dependent phosphorylation during OXPHOS inhibition. Overexpression of Pfkfb3 induced HSC proliferation and promoted differentiated cell production, whereas inhibition or loss of Pfkfb3 suppressed them. This study reveals the flexible and multilayered regulation of HSC glycolytic metabolism to sustain hematopoiesis under stress and provides techniques to better understand the physiological metabolism of rare hematopoietic cells.