The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression

  1. Aynur Kaya-Çopur  Is a corresponding author
  2. Fabio Marchiano
  3. Marco Y Hein
  4. Daniel Alpern
  5. Julie Russeil
  6. Nuno Miguel Luis
  7. Matthias Mann
  8. Bart Deplancke
  9. Bianca H Habermann
  10. Frank Schnorrer  Is a corresponding author
  1. Aix Marseille University, CNRS, IDBM, France
  2. Max Planck Institute of Biochemistry, Germany
  3. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
  4. Aix Marseille University, CNRS, France

Abstract

Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.

Data availability

Sequencing data have been deposited in GEO under accession code GSE158957

The following data sets were generated

Article and author information

Author details

  1. Aynur Kaya-Çopur

    Muscle Dynamics, Aix Marseille University, CNRS, IDBM, Marseille, France
    For correspondence
    aynur.KAYA-COPUR@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabio Marchiano

    Computational Biology, Aix Marseille University, CNRS, IDBM, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marco Y Hein

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9490-2261
  4. Daniel Alpern

    Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie Russeil

    Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Nuno Miguel Luis

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5438-9638
  7. Matthias Mann

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1292-4799
  8. Bart Deplancke

    School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9935-843X
  9. Bianca H Habermann

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2457-7504
  10. Frank Schnorrer

    Muscle Dynamics, Aix Marseille University, CNRS, IDBM, Marseille, France
    For correspondence
    frank.schnorrer@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9518-7263

Funding

European Research Council ERC (FP/2007-2013)

  • Frank Schnorrer

Bettencourt Foundation

  • Frank Schnorrer

Turing Center for Living Systems

  • Frank Schnorrer

Max Planck Society

  • Frank Schnorrer

Centre National de la Recherche Scientifique

  • Frank Schnorrer

Aix-Marseille Université (ANR-11-IDEX-0001-02)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-ACHN MUSCLE-FORCES)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-18-CE45-0016-01)

  • Bianca H Habermann

Human Frontier Science Program (RGP0052/2018)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-10-INBS-04-01)

  • Frank Schnorrer

Humboldt Foundation

  • Aynur Kaya-Çopur

EMBO

  • Aynur Kaya-Çopur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kaya-Çopur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,245
    views
  • 489
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aynur Kaya-Çopur
  2. Fabio Marchiano
  3. Marco Y Hein
  4. Daniel Alpern
  5. Julie Russeil
  6. Nuno Miguel Luis
  7. Matthias Mann
  8. Bart Deplancke
  9. Bianca H Habermann
  10. Frank Schnorrer
(2021)
The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression
eLife 10:e63726.
https://doi.org/10.7554/eLife.63726

Share this article

https://doi.org/10.7554/eLife.63726

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.