The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression

  1. Aynur Kaya-Çopur  Is a corresponding author
  2. Fabio Marchiano
  3. Marco Y Hein
  4. Daniel Alpern
  5. Julie Russeil
  6. Nuno Miguel Luis
  7. Matthias Mann
  8. Bart Deplancke
  9. Bianca H Habermann
  10. Frank Schnorrer  Is a corresponding author
  1. Aix Marseille University, CNRS, IDBM, France
  2. Max Planck Institute of Biochemistry, Germany
  3. École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
  4. Aix Marseille University, CNRS, France

Abstract

Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.

Data availability

Sequencing data have been deposited in GEO under accession code GSE158957

The following data sets were generated

Article and author information

Author details

  1. Aynur Kaya-Çopur

    Muscle Dynamics, Aix Marseille University, CNRS, IDBM, Marseille, France
    For correspondence
    aynur.KAYA-COPUR@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabio Marchiano

    Computational Biology, Aix Marseille University, CNRS, IDBM, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Marco Y Hein

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9490-2261
  4. Daniel Alpern

    Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie Russeil

    Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Nuno Miguel Luis

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5438-9638
  7. Matthias Mann

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1292-4799
  8. Bart Deplancke

    School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9935-843X
  9. Bianca H Habermann

    Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2457-7504
  10. Frank Schnorrer

    Muscle Dynamics, Aix Marseille University, CNRS, IDBM, Marseille, France
    For correspondence
    frank.schnorrer@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9518-7263

Funding

European Research Council ERC (FP/2007-2013)

  • Frank Schnorrer

Bettencourt Foundation

  • Frank Schnorrer

Turing Center for Living Systems

  • Frank Schnorrer

Max Planck Society

  • Frank Schnorrer

Centre National de la Recherche Scientifique

  • Frank Schnorrer

Aix-Marseille Université (ANR-11-IDEX-0001-02)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-ACHN MUSCLE-FORCES)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-18-CE45-0016-01)

  • Bianca H Habermann

Human Frontier Science Program (RGP0052/2018)

  • Frank Schnorrer

Agence Nationale de la Recherche (ANR-10-INBS-04-01)

  • Frank Schnorrer

Humboldt Foundation

  • Aynur Kaya-Çopur

EMBO

  • Aynur Kaya-Çopur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: October 5, 2020
  2. Accepted: January 5, 2021
  3. Accepted Manuscript published: January 6, 2021 (version 1)
  4. Version of Record published: January 18, 2021 (version 2)

Copyright

© 2021, Kaya-Çopur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,021
    views
  • 453
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aynur Kaya-Çopur
  2. Fabio Marchiano
  3. Marco Y Hein
  4. Daniel Alpern
  5. Julie Russeil
  6. Nuno Miguel Luis
  7. Matthias Mann
  8. Bart Deplancke
  9. Bianca H Habermann
  10. Frank Schnorrer
(2021)
The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression
eLife 10:e63726.
https://doi.org/10.7554/eLife.63726

Share this article

https://doi.org/10.7554/eLife.63726

Further reading

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.