CEP78 functions downstream of CEP350 to control biogenesis of primary cilia by negatively regulating CP110 levels

  1. André B Goncalves
  2. Sarah K Hasselbalch
  3. Beinta B Joensen
  4. Sebastian Patzke
  5. Pernille Martens
  6. Signe K Ohlsen
  7. Mathieu Quinodoz
  8. Konstantinos Nikopoulos
  9. Reem Suleiman
  10. Magnus P Damso Jeppesen
  11. Catja Weiss
  12. Søren Tvorup Christensen
  13. Carlo Rivolta
  14. Jens S Andersen
  15. Pietro Farinelli  Is a corresponding author
  16. Lotte B Pedersen  Is a corresponding author
  1. University of Copenhagen, Denmark
  2. Oslo University Hospital, Norway
  3. University of Southern Denmark, Denmark
  4. University of Basel, Switzerland
  5. University of Lausanne, Switzerland

Abstract

CEP78 is a centrosomal protein implicated in ciliogenesis and ciliary length control, and mutations in the CEP78 gene cause retinal cone-rod dystrophy associated with hearing loss. However, the mechanism by which CEP78 affects cilia formation is unknown. Based on a recently discovered disease-causing CEP78 p.L150S mutation, we identified the disease-relevant interactome of CEP78. We confirmed that CEP78 interacts with the EDD1-DYRK2-DDB1VPRBP E3 ubiquitin ligase complex, which is involved in CP110 ubiquitination and degradation, and identified a novel interaction between CEP78 and CEP350 that is weakened by the CEP78L150S mutation. We show that CEP350 promotes centrosomal recruitment and stability of CEP78, which in turn leads to centrosomal recruitment of EDD1. Consistently, cells lacking CEP78 display significantly increased cellular and centrosomal levels of CP110, and depletion of CP110 in CEP78-deficient cells restored ciliation frequency to normal. We propose that CEP78 functions downstream of CEP350 to promote ciliogenesis by negatively regulating CP110 levels via an EDD1-dependent mechanism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 3A and Figure 7-figure supplement 2.

Article and author information

Author details

  1. André B Goncalves

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah K Hasselbalch

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Beinta B Joensen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Sebastian Patzke

    Oslo University Hospital, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Pernille Martens

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Signe K Ohlsen

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Mathieu Quinodoz

    Institute of Molecular and Clinical Ophthalmology Basel (IOB); Department of Ophthalmology, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Konstantinos Nikopoulos

    Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Reem Suleiman

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  10. Magnus P Damso Jeppesen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  11. Catja Weiss

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  12. Søren Tvorup Christensen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5004-304X
  13. Carlo Rivolta

    Institute of Molecular and Clinical Ophthalmology Basel (IOB); Department of Ophthalmology, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Jens S Andersen

    Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  15. Pietro Farinelli

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    Pietro.Farinelli@twelve.bio
    Competing interests
    The authors declare that no competing interests exist.
  16. Lotte B Pedersen

    Department of Biology, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    lbpedersen@bio.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9749-3758

Funding

Independent Research Fund Denmark (8020‐00162B)

  • Pietro Farinelli
  • Lotte B Pedersen

Carlsberg Foundation (CF18‐0294)

  • Lotte B Pedersen

Independent Research Fund Denmark (8021-00425A)

  • Jens S Andersen

Swiss National Science Foundation (176097)

  • Carlo Rivolta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jens Lüders, Institute for Research in Biomedicine, Spain

Publication history

  1. Preprint posted: October 5, 2020 (view preprint)
  2. Received: October 5, 2020
  3. Accepted: July 13, 2021
  4. Accepted Manuscript published: July 14, 2021 (version 1)
  5. Version of Record published: August 10, 2021 (version 2)

Copyright

© 2021, Goncalves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,283
    Page views
  • 247
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. André B Goncalves
  2. Sarah K Hasselbalch
  3. Beinta B Joensen
  4. Sebastian Patzke
  5. Pernille Martens
  6. Signe K Ohlsen
  7. Mathieu Quinodoz
  8. Konstantinos Nikopoulos
  9. Reem Suleiman
  10. Magnus P Damso Jeppesen
  11. Catja Weiss
  12. Søren Tvorup Christensen
  13. Carlo Rivolta
  14. Jens S Andersen
  15. Pietro Farinelli
  16. Lotte B Pedersen
(2021)
CEP78 functions downstream of CEP350 to control biogenesis of primary cilia by negatively regulating CP110 levels
eLife 10:e63731.
https://doi.org/10.7554/eLife.63731
  1. Further reading

Further reading

    1. Cell Biology
    Benjamin Barsi-Rhyne, Aashish Manglik, Mark von Zastrow
    Research Article Updated

    β-Arrestins are master regulators of cellular signaling that operate by desensitizing ligand-activated G-protein-coupled receptors (GPCRs) at the plasma membrane and promoting their subsequent endocytosis. The endocytic activity of β-arrestins is ligand dependent, triggered by GPCR binding, and increasingly recognized to have a multitude of downstream signaling and trafficking consequences that are specifically programmed by the bound GPCR. However, only one biochemical ‘mode’ for GPCR-mediated triggering of the endocytic activity is presently known – displacement of the β-arrestin C-terminus (CT) to expose clathrin-coated pit-binding determinants that are masked in the inactive state. Here, we revise this view by uncovering a second mode of GPCR-triggered endocytic activity that is independent of the β-arrestin CT and, instead, requires the cytosolic base of the β-arrestin C-lobe (CLB). We further show each of the discrete endocytic modes is triggered in a receptor-specific manner, with GPCRs that bind β-arrestin transiently (‘class A’) primarily triggering the CLB-dependent mode and GPCRs that bind more stably (‘class B’) triggering both the CT and CLB-dependent modes in combination. Moreover, we show that different modes have opposing effects on the net signaling output of receptors – with the CLB-dependent mode promoting rapid signal desensitization and the CT-dependent mode enabling prolonged signaling. Together, these results fundamentally revise understanding of how β-arrestins operate as efficient endocytic adaptors while facilitating diversity and flexibility in the control of cell signaling.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Jie Li, Jiayi Wu ... Eunhee Choi
    Research Article

    The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) control metabolic homeostasis and cell growth and proliferation. The IR and IGF1R form similar disulfide bonds linked homodimers in the apo-state; however, their ligand binding properties and the structures in the active state differ substantially. It has been proposed that the disulfide-linked C-terminal segment of α-chain (αCTs) of the IR and IGF1R control the cooperativity of ligand binding and regulate the receptor activation. Nevertheless, the molecular basis for the roles of disulfide-linked αCTs in IR and IGF1R activation are still unclear. Here, we report the cryo-EM structures of full-length mouse IGF1R/IGF1 and IR/insulin complexes with modified αCTs that have increased flexibility. Unlike the Γ-shaped asymmetric IGF1R dimer with a single IGF1 bound, the IGF1R with the enhanced flexibility of αCTs can form a T-shaped symmetric dimer with two IGF1s bound. Meanwhile, the IR with non-covalently linked αCTs predominantly adopts an asymmetric conformation with four insulins bound, which is distinct from the T-shaped symmetric IR. Using cell-based experiments, we further showed that both IGF1R and IR with the modified αCTs cannot activate the downstream signaling potently. Collectively, our studies demonstrate that the certain structural rigidity of disulfide-linked αCTs is critical for optimal IR and IGF1R signaling activation.