Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing

  1. Lauren K Strohacker
  2. Douglas R Mackay
  3. Madeline A Whitney
  4. Genevieve C Couldwell
  5. Wesley I Sundquist  Is a corresponding author
  6. Katharine S Ullman  Is a corresponding author
  1. University of Utah, United States
  2. University of Utah School of Medicine, United States

Abstract

The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from Mitotic Interchromatin Granules (MIGs), transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.

Data availability

All data reported in this study are included in source data files for each figure.

Article and author information

Author details

  1. Lauren K Strohacker

    Biochemistry and Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Douglas R Mackay

    Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Madeline A Whitney

    Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. Genevieve C Couldwell

    Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Wesley I Sundquist

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    wes@biochem.utah.edu
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9988-6021
  6. Katharine S Ullman

    Oncological Sciences, University of Utah, Salt Lake City, United States
    For correspondence
    katharine.ullman@hci.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3693-2830

Funding

National Institutes of Health (NIH R01GM112080)

  • Wesley I Sundquist
  • Katharine S Ullman

Huntsman Cancer Foundation (CRR award)

  • Wesley I Sundquist
  • Katharine S Ullman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Strohacker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,599
    views
  • 396
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren K Strohacker
  2. Douglas R Mackay
  3. Madeline A Whitney
  4. Genevieve C Couldwell
  5. Wesley I Sundquist
  6. Katharine S Ullman
(2021)
Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing
eLife 10:e63743.
https://doi.org/10.7554/eLife.63743

Share this article

https://doi.org/10.7554/eLife.63743

Further reading

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.

    1. Cancer Biology
    2. Evolutionary Biology
    Lingjie Zhang, Tong Deng ... Chung-I Wu
    Research Article

    Tumorigenesis, like most complex genetic traits, is driven by the joint actions of many mutations. At the nucleotide level, such mutations are cancer-driving nucleotides (CDNs). The full sets of CDNs are necessary, and perhaps even sufficient, for the understanding and treatment of each cancer patient. Currently, only a small fraction of CDNs is known as most mutations accrued in tumors are not drivers. We now develop the theory of CDNs on the basis that cancer evolution is massively repeated in millions of individuals. Hence, any advantageous mutation should recur frequently and, conversely, any mutation that does not is either a passenger or deleterious mutation. In the TCGA cancer database (sample size n=300–1000), point mutations may recur in i out of n patients. This study explores a wide range of mutation characteristics to determine the limit of recurrences (i*) driven solely by neutral evolution. Since no neutral mutation can reach i*=3, all mutations recurring at i≥3 are CDNs. The theory shows the feasibility of identifying almost all CDNs if n increases to 100,000 for each cancer type. At present, only <10% of CDNs have been identified. When the full sets of CDNs are identified, the evolutionary mechanism of tumorigenesis in each case can be known and, importantly, gene targeted therapy will be far more effective in treatment and robust against drug resistance.