Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing

  1. Lauren K Strohacker
  2. Douglas R Mackay
  3. Madeline A Whitney
  4. Genevieve C Couldwell
  5. Wesley I Sundquist  Is a corresponding author
  6. Katharine S Ullman  Is a corresponding author
  1. University of Utah, United States
  2. University of Utah School of Medicine, United States

Abstract

The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from Mitotic Interchromatin Granules (MIGs), transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.

Data availability

All data reported in this study are included in source data files for each figure.

Article and author information

Author details

  1. Lauren K Strohacker

    Biochemistry and Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Douglas R Mackay

    Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Madeline A Whitney

    Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. Genevieve C Couldwell

    Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Wesley I Sundquist

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    wes@biochem.utah.edu
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9988-6021
  6. Katharine S Ullman

    Oncological Sciences, University of Utah, Salt Lake City, United States
    For correspondence
    katharine.ullman@hci.utah.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3693-2830

Funding

National Institutes of Health (NIH R01GM112080)

  • Wesley I Sundquist
  • Katharine S Ullman

Huntsman Cancer Foundation (CRR award)

  • Wesley I Sundquist
  • Katharine S Ullman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Strohacker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,617
    views
  • 396
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren K Strohacker
  2. Douglas R Mackay
  3. Madeline A Whitney
  4. Genevieve C Couldwell
  5. Wesley I Sundquist
  6. Katharine S Ullman
(2021)
Identification of abscission checkpoint bodies as structures that regulate ESCRT factors to control abscission timing
eLife 10:e63743.
https://doi.org/10.7554/eLife.63743

Share this article

https://doi.org/10.7554/eLife.63743

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.