MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs

Abstract

Although the function of microRNAs (miRNAs) during embryonic development has been intensively studied in recent years, their postnatal physiological functions remain largely unexplored due to inherent difficulties with the presence of redundant paralogs of the same seed. Thus, it is particularly challenging to uncover miRNA functions at neural circuit level since animal behaviors would need to be assessed upon complete loss of miRNA family functions. Here, we focused on the neural functions of MiR34/449 that manifests a dynamic expression pattern in the spinal cord from embryonic to postnatal stages. Our behavioral assays reveal that the loss of MiR34/449 miRNAs perturb thermally-induced pain response thresholds and compromised delicate motor output in mice. Mechanistically, MiR34/449 directly target Satb1 and Satb2 to fine-tune the precise number of a sub-population of motor synergy encoder (MSE) neurons. Thus, MiR34/449 fine-tunes optimal development of Satb1/2on interneurons in the spinal cord, thereby refining explicit sensory-to-motor circuit outputs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for supplementary video1 and 2.The R analysis script written for this paper is available at https://gitlab.com/jaclab/mir-34_449.

Article and author information

Author details

  1. Shih-Hsin Chang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2821-7095
  2. Yi-Ching Su

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2760-9540
  3. Mien Chang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun-An Chen

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
    For correspondence
    jachen@imb.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9870-3203

Funding

Ministry of Science and Technology, Taiwan (109-2811-B-001-546-)

  • Jun-An Chen

Ministry of Science and Technology, Taiwan (108-2311-B-001-011-)

  • Jun-An Chen

Ministry of Science and Technology, Taiwan (107-2311-B-001-043-)

  • Jun-An Chen

National Health Research Institutes (NHRI-EX108-10831NI)

  • Jun-An Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,278
    views
  • 237
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shih-Hsin Chang
  2. Yi-Ching Su
  3. Mien Chang
  4. Jun-An Chen
(2021)
MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs
eLife 10:e63768.
https://doi.org/10.7554/eLife.63768

Share this article

https://doi.org/10.7554/eLife.63768

Further reading

    1. Developmental Biology
    Cora Demler, John C Lawlor ... Natasza A Kurpios
    Research Article

    Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo, without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals remain poorly understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.

    1. Developmental Biology
    Valeria Sulzyk, Ludmila Curci ... Patricia S Cuasnicu
    Research Article

    Numerous reports showed that the epididymis plays key roles in the acquisition of sperm fertilizing ability but its contribution to embryo development remains less understood. Female mice mated with males with simultaneous mutations in Crisp1 and Crisp3 genes exhibited normal in vivo fertilization but impaired embryo development. In this work, we found that this phenotype was not due to delayed fertilization, and it was observed in eggs fertilized by epididymal sperm either in vivo or in vitro. Of note, eggs fertilized in vitro by mutant sperm displayed impaired meiotic resumption unrelated to Ca2+ oscillations defects during egg activation, supporting potential sperm DNA defects. Interestingly, cauda but not caput epididymal mutant sperm exhibited increased DNA fragmentation, revealing that DNA integrity defects appear during epididymal transit. Moreover, exposing control sperm to mutant epididymal fluid or to Ca2+-supplemented control fluid significantly increased DNA fragmentation. This, together with the higher intracellular Ca2+ levels detected in mutant sperm, supports a dysregulation in Ca2+ homeostasis within the epididymis and sperm as the main factor responsible for embryo development failure. These findings highlight the contribution of the epididymis beyond fertilization and identify CRISP1 and CRISP3 as novel factors essential for sperm DNA integrity and early embryo development.