A naturalistic environment to study visual cognition in unrestrained monkeys

  1. Georgin Jacob
  2. Harish Katti
  3. Thomas Cherian
  4. Jhilik Das
  5. KA Zhivago
  6. SP Arun  Is a corresponding author
  1. Indian Institute of Science Bangalore, India

Abstract

Macaque monkeys are widely used to study vision. In the traditional approach, monkeys are brought into a lab to perform visual tasks while they are restrained to obtain stable eye tracking and neural recordings. Here, we describe a novel environment to study visual cognition in a more natural setting as well as other natural and social behaviors. We designed a naturalistic environment with an integrated touchscreen workstation that enables high-quality eye tracking in unrestrained monkeys. We used this environment to train monkeys on a challenging same-different task. We also show that this environment can reveal interesting novel social behaviors. As proof of concept, we show that two naïve monkeys were able to learn this complex task through a combination of socially observing trained monkeys and through solo trial-and-error. We propose that such naturalistic environments can be used to rigorously study visual cognition as well as other natural and social behaviors in freely moving monkeys.

Data availability

All data required to reproduce the results in the study are available at https://osf.io/5764q/

Article and author information

Author details

  1. Georgin Jacob

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8262-0155
  2. Harish Katti

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Cherian

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Jhilik Das

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. KA Zhivago

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. SP Arun

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    sparun@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9602-5066

Funding

DBT-Wellcome Trust India Alliance (IA/S/17/1/503081)

  • SP Arun

ICMR Senior Research Fellowship

  • Thomas Cherian

UGC Senior Research Fellowship

  • Jhilik Das

DST Cognitive Science Research Initiative

  • Harish Katti

MHRD Senior Research Fellowship

  • Georgin Jacob

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were in accordance to experimental protocols approved by the Institutional Animal Ethics Committee of the Indian Institute of Science (CAF/Ethics/399/2014 & CAF/Ethics/750/2020) and by the Committee for the Purpose of Control and Supervision of Experiments on Animals, Government of India (25/61/2015-CPCSEA & V-11011(3)/15/2020-CPCSEA-DADF).

Reviewing Editor

  1. Miriam Spering, The University of British Columbia, Canada

Publication history

  1. Preprint posted: September 28, 2020 (view preprint)
  2. Received: October 8, 2020
  3. Accepted: November 24, 2021
  4. Accepted Manuscript published: November 25, 2021 (version 1)
  5. Version of Record published: December 15, 2021 (version 2)
  6. Version of Record updated: December 24, 2021 (version 3)

Copyright

© 2021, Jacob et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,357
    Page views
  • 255
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georgin Jacob
  2. Harish Katti
  3. Thomas Cherian
  4. Jhilik Das
  5. KA Zhivago
  6. SP Arun
(2021)
A naturalistic environment to study visual cognition in unrestrained monkeys
eLife 10:e63816.
https://doi.org/10.7554/eLife.63816

Further reading

    1. Neuroscience
    Yonatan Sanz Perl, Sol Fittipaldi ... Enzo Tagliazucchi
    Research Article

    The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.

    1. Neuroscience
    Andrea Alamia, Lucie Terral ... Rufin VanRullen
    Research Article Updated

    Previous research has associated alpha-band [8–12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions. We analyzed EEG recordings from three datasets of human participants performing a covert visual attention task (one new dataset with N = 16, two previously published datasets with N = 16 and N = 31). Participants were instructed to detect a brief target by covertly attending to the screen’s left or right side. Our analysis reveals two distinct processes: allocating attention to one hemifield increases top-down alpha-band waves propagating from frontal to occipital regions ipsilateral to the attended location, both with and without visual stimulation. These top-down oscillatory waves correlate positively with alpha-band power in frontal and occipital regions. Yet, different alpha-band waves propagate from occipital to frontal regions and contralateral to the attended location. Crucially, these forward waves were present only during visual stimulation, suggesting a separate mechanism related to visual processing. Together, these results reveal two distinct processes reflected by different propagation directions, demonstrating the importance of considering oscillations as traveling waves when characterizing their functional role.