A naturalistic environment to study visual cognition in unrestrained monkeys

  1. Georgin Jacob
  2. Harish Katti
  3. Thomas Cherian
  4. Jhilik Das
  5. KA Zhivago
  6. SP Arun  Is a corresponding author
  1. Indian Institute of Science Bangalore, India

Abstract

Macaque monkeys are widely used to study vision. In the traditional approach, monkeys are brought into a lab to perform visual tasks while they are restrained to obtain stable eye tracking and neural recordings. Here, we describe a novel environment to study visual cognition in a more natural setting as well as other natural and social behaviors. We designed a naturalistic environment with an integrated touchscreen workstation that enables high-quality eye tracking in unrestrained monkeys. We used this environment to train monkeys on a challenging same-different task. We also show that this environment can reveal interesting novel social behaviors. As proof of concept, we show that two naïve monkeys were able to learn this complex task through a combination of socially observing trained monkeys and through solo trial-and-error. We propose that such naturalistic environments can be used to rigorously study visual cognition as well as other natural and social behaviors in freely moving monkeys.

Data availability

All data required to reproduce the results in the study are available at https://osf.io/5764q/

Article and author information

Author details

  1. Georgin Jacob

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8262-0155
  2. Harish Katti

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Cherian

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Jhilik Das

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. KA Zhivago

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. SP Arun

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    sparun@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9602-5066

Funding

DBT-Wellcome Trust India Alliance (IA/S/17/1/503081)

  • SP Arun

ICMR Senior Research Fellowship

  • Thomas Cherian

UGC Senior Research Fellowship

  • Jhilik Das

DST Cognitive Science Research Initiative

  • Harish Katti

MHRD Senior Research Fellowship

  • Georgin Jacob

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were in accordance to experimental protocols approved by the Institutional Animal Ethics Committee of the Indian Institute of Science (CAF/Ethics/399/2014 & CAF/Ethics/750/2020) and by the Committee for the Purpose of Control and Supervision of Experiments on Animals, Government of India (25/61/2015-CPCSEA & V-11011(3)/15/2020-CPCSEA-DADF).

Reviewing Editor

  1. Miriam Spering, The University of British Columbia, Canada

Version history

  1. Preprint posted: September 28, 2020 (view preprint)
  2. Received: October 8, 2020
  3. Accepted: November 24, 2021
  4. Accepted Manuscript published: November 25, 2021 (version 1)
  5. Version of Record published: December 15, 2021 (version 2)
  6. Version of Record updated: December 24, 2021 (version 3)

Copyright

© 2021, Jacob et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,789
    Page views
  • 295
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georgin Jacob
  2. Harish Katti
  3. Thomas Cherian
  4. Jhilik Das
  5. KA Zhivago
  6. SP Arun
(2021)
A naturalistic environment to study visual cognition in unrestrained monkeys
eLife 10:e63816.
https://doi.org/10.7554/eLife.63816

Further reading

    1. Neuroscience
    Louise Schenberg, Aïda Palou ... Mathieu Beraneck
    Research Article

    The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.

    1. Neuroscience
    Mika Rubinov
    Review Article

    Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.