A naturalistic environment to study visual cognition in unrestrained monkeys

  1. Georgin Jacob
  2. Harish Katti
  3. Thomas Cherian
  4. Jhilik Das
  5. KA Zhivago
  6. SP Arun  Is a corresponding author
  1. Indian Institute of Science Bangalore, India

Abstract

Macaque monkeys are widely used to study vision. In the traditional approach, monkeys are brought into a lab to perform visual tasks while they are restrained to obtain stable eye tracking and neural recordings. Here, we describe a novel environment to study visual cognition in a more natural setting as well as other natural and social behaviors. We designed a naturalistic environment with an integrated touchscreen workstation that enables high-quality eye tracking in unrestrained monkeys. We used this environment to train monkeys on a challenging same-different task. We also show that this environment can reveal interesting novel social behaviors. As proof of concept, we show that two naïve monkeys were able to learn this complex task through a combination of socially observing trained monkeys and through solo trial-and-error. We propose that such naturalistic environments can be used to rigorously study visual cognition as well as other natural and social behaviors in freely moving monkeys.

Data availability

All data required to reproduce the results in the study are available at https://osf.io/5764q/

Article and author information

Author details

  1. Georgin Jacob

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8262-0155
  2. Harish Katti

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Cherian

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Jhilik Das

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. KA Zhivago

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  6. SP Arun

    Centre for Neuroscience, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    sparun@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9602-5066

Funding

DBT-Wellcome Trust India Alliance (IA/S/17/1/503081)

  • SP Arun

ICMR Senior Research Fellowship

  • Thomas Cherian

UGC Senior Research Fellowship

  • Jhilik Das

DST Cognitive Science Research Initiative

  • Harish Katti

MHRD Senior Research Fellowship

  • Georgin Jacob

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Miriam Spering, The University of British Columbia, Canada

Ethics

Animal experimentation: All procedures were in accordance to experimental protocols approved by the Institutional Animal Ethics Committee of the Indian Institute of Science (CAF/Ethics/399/2014 & CAF/Ethics/750/2020) and by the Committee for the Purpose of Control and Supervision of Experiments on Animals, Government of India (25/61/2015-CPCSEA & V-11011(3)/15/2020-CPCSEA-DADF).

Version history

  1. Preprint posted: September 28, 2020 (view preprint)
  2. Received: October 8, 2020
  3. Accepted: November 24, 2021
  4. Accepted Manuscript published: November 25, 2021 (version 1)
  5. Version of Record published: December 15, 2021 (version 2)
  6. Version of Record updated: December 24, 2021 (version 3)

Copyright

© 2021, Jacob et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,031
    views
  • 322
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Georgin Jacob
  2. Harish Katti
  3. Thomas Cherian
  4. Jhilik Das
  5. KA Zhivago
  6. SP Arun
(2021)
A naturalistic environment to study visual cognition in unrestrained monkeys
eLife 10:e63816.
https://doi.org/10.7554/eLife.63816

Share this article

https://doi.org/10.7554/eLife.63816

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.