Psychosocial experiences modulate asthma-associated genes through gene-environment interactions

  1. Justyna A Resztak
  2. Allison K Farrell
  3. Henriette Mair-Meijers
  4. Adnan Alazizi
  5. Xiaoquan Wen
  6. Derek E Wildman
  7. Samuele Zilioli
  8. Richard B Slatcher
  9. Roger Pique-Regi  Is a corresponding author
  10. Francesca Luca  Is a corresponding author
  1. Wayne State University, United States
  2. Miami University, United States
  3. University of Michigan, United States
  4. University of South Florida, United States

Abstract

Social interactions and the overall psychosocial environment have a demonstrated impact on health, particularly for people living in disadvantaged urban areas. Here we investigated the effect of psychosocial experiences on gene expression in peripheral blood immune cells of children with asthma in Metro Detroit. Using RNA-sequencing and a new machine learning approach, we identified transcriptional signatures of 19 variables including psychosocial factors, blood cell composition and asthma symptoms. Importantly, we found 169 genes associated with asthma or allergic disease that are regulated by psychosocial factors, and 344 significant gene-environment interactions for gene expression levels. These results demonstrate that immune gene expression mediates the link between negative psychosocial experiences and asthma risk.

Data availability

The data are available on dbGAP. Accession number: phs002182.v1.p1.

The following data sets were generated

Article and author information

Author details

  1. Justyna A Resztak

    Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Allison K Farrell

    Department of Psychology, Miami University, Oxford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Henriette Mair-Meijers

    Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adnan Alazizi

    Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaoquan Wen

    University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Derek E Wildman

    College of Public Health, University of South Florida, Tampa, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Samuele Zilioli

    Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Richard B Slatcher

    Wayne State University, Detroit, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Roger Pique-Regi

    Wayne State University, Detroit, United States
    For correspondence
    rpique@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1262-2275
  10. Francesca Luca

    Wayne State University, Detroit, United States
    For correspondence
    fluca@wayne.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8252-9052

Funding

National Heart, Lung, and Blood Institute (R01HL114097)

  • Samuele Zilioli
  • Richard B Slatcher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia W Finn, University of Illinois at Chicago, United States

Ethics

Human subjects: Participants were included from an ongoing longitudinal study, Asthma in the Lives of Families Today (ALOFT; recruited from November 2010-July 2018, Wayne State University Institutional Review Board approval #0412110B3F).

Version history

  1. Received: October 8, 2020
  2. Accepted: June 16, 2021
  3. Accepted Manuscript published: June 18, 2021 (version 1)
  4. Version of Record published: July 15, 2021 (version 2)
  5. Version of Record updated: July 21, 2021 (version 3)

Copyright

© 2021, Resztak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,444
    views
  • 134
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justyna A Resztak
  2. Allison K Farrell
  3. Henriette Mair-Meijers
  4. Adnan Alazizi
  5. Xiaoquan Wen
  6. Derek E Wildman
  7. Samuele Zilioli
  8. Richard B Slatcher
  9. Roger Pique-Regi
  10. Francesca Luca
(2021)
Psychosocial experiences modulate asthma-associated genes through gene-environment interactions
eLife 10:e63852.
https://doi.org/10.7554/eLife.63852

Share this article

https://doi.org/10.7554/eLife.63852

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Yifei Weng, Shiyi Zhou ... Coleen T Murphy
    Research Article

    Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.

    1. Genetics and Genomics
    Samuel Pattillo Smith, Gregory Darnell ... Lorin Crawford
    Research Article

    LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.