Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization

  1. Andriy S Yatsenko
  2. Mariya M Kucherenko
  3. Yuanbin Xie
  4. Henning Urlaub
  5. Halyna R Shcherbata  Is a corresponding author
  1. Hannover Medical School, Germany
  2. Charite Medicine University, Germany
  3. Gannan Medical University, China
  4. University Medical Center Göttingen, Germany

Abstract

To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II, or cobblestone brain. The previously established Drosophila model for cobblestone encephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files or found on the Dryad Digital Repository (Data DOI: doi:10.5061/dryad.8sf7m0cmf).

The following data sets were generated

Article and author information

Author details

  1. Andriy S Yatsenko

    Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Mariya M Kucherenko

    Institute of Physiology, Charite Medicine University, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Yuanbin Xie

    Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Gannan Medical University, Ganzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Henning Urlaub

    Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Halyna R Shcherbata

    Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
    For correspondence
    halyna.shcherbata@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3855-0345

Funding

EMBO (YIP)

  • Halyna R Shcherbata

VW Stiftung (AZN3008)

  • Halyna R Shcherbata

Hannover Medical School

  • Halyna R Shcherbata

VW Stiftung (AZ97750)

  • Halyna R Shcherbata

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yatsenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,182
    views
  • 166
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andriy S Yatsenko
  2. Mariya M Kucherenko
  3. Yuanbin Xie
  4. Henning Urlaub
  5. Halyna R Shcherbata
(2021)
Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization
eLife 10:e63868.
https://doi.org/10.7554/eLife.63868

Share this article

https://doi.org/10.7554/eLife.63868

Further reading

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.