Charge-driven condensation of RNA and proteins suggests broad role of phase separation in cytoplasmic environments

Abstract

Phase separation processes are increasingly being recognized as important organizing mechanisms of biological macromolecules in cellular environments. Well established drivers of phase separation are multi-valency and intrinsic disorder. Here, we show that globular macromolecules may condense simply based on electrostatic complementarity. More specifically, phase separation of mixtures between RNA and positively charged proteins is described from a combination of multiscale computer simulations with microscopy and spectroscopy experiments. Phase diagrams were mapped out as a function of molecular concentrations in experiment and as a function of molecular size and temperature via simulations. The resulting condensates were found to retain at least some degree of internal dynamics varying as a function of the molecular composition. The results suggest a more general principle for phase separation that is based primarily on electrostatic complementarity without invoking polymer properties as in most previous studies. Simulation results furthermore suggest that such phase separation may occur widely in heterogenous cellular environment between nucleic acid and protein components.

Data availability

All experimental data generated and analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Bercem Dutagaci

    Biochemistry & Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0333-5757
  2. Grzegorz Nawrocki

    Biochemistry & Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joyce Goodluck

    Physics, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ali Akbar Ashkarran

    Precision Health Program and Department of Radiology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles G Hoogstraten

    Biochemistry & Molecular Biology, Michigan State University, East Lansing, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lisa J Lapidus

    Physics, Michigan State University, East Lansing, United States
    For correspondence
    lapidus@msu.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Feig

    Biochemistry & Molecular Biology, Michigan State University, East Lansing, United States
    For correspondence
    mfeiglab@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9380-6422

Funding

National Institutes of Health (R35 GM126948)

  • Bercem Dutagaci
  • Grzegorz Nawrocki
  • Michael Feig

National Science Foundation (MCB 1817307)

  • Bercem Dutagaci
  • Grzegorz Nawrocki
  • Joyce Goodluck
  • Lisa J Lapidus
  • Michael Feig

National Science Foundation (MCB 2018296)

  • Charles G Hoogstraten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Donald Hamelberg, Georgia State University, United States

Version history

  1. Received: October 15, 2020
  2. Accepted: January 25, 2021
  3. Accepted Manuscript published: January 26, 2021 (version 1)
  4. Version of Record published: February 10, 2021 (version 2)

Copyright

© 2021, Dutagaci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,259
    Page views
  • 722
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bercem Dutagaci
  2. Grzegorz Nawrocki
  3. Joyce Goodluck
  4. Ali Akbar Ashkarran
  5. Charles G Hoogstraten
  6. Lisa J Lapidus
  7. Michael Feig
(2021)
Charge-driven condensation of RNA and proteins suggests broad role of phase separation in cytoplasmic environments
eLife 10:e64004.
https://doi.org/10.7554/eLife.64004

Share this article

https://doi.org/10.7554/eLife.64004

Further reading

    1. Physics of Living Systems
    Giulio Facchini, Alann Rathery ... Andrea Perna
    Research Article

    Termites build complex nests which are an impressive example of self-organization. We know that the coordinated actions involved in the construction of these nests by multiple individuals are primarily mediated by signals and cues embedded in the structure of the nest itself. However, to date there is still no scientific consensus about the nature of the stimuli that guide termite construction, and how they are sensed by termites. In order to address these questions, we studied the early building behavior of Coptotermes gestroi termites in artificial arenas, decorated with topographic cues to stimulate construction. Pellet collections were evenly distributed across the experimental setup, compatible with a collection mechanism that is not affected by local topography, but only by the distribution of termite occupancy (termites pick pellets at the positions where they are). Conversely, pellet depositions were concentrated at locations of high surface curvature and at the boundaries between different types of substrate. The single feature shared by all pellet deposition regions was that they correspond to local maxima in the evaporation flux. We can show analytically and we confirm experimentally that evaporation flux is directly proportional to the local curvature of nest surfaces. Taken together, our results indicate that surface curvature is sufficient to organize termite building activity and that termites likely sense curvature indirectly through substrate evaporation. Our findings reconcile the apparently discordant results of previous studies.

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Fabien Duveau, Céline Cordier ... Pascal Hersen
    Research Article

    Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.