PRD-2 directly regulates casein kinase I and counteracts nonsense mediated decay in the Neurospora circadian clock

  1. Christina M Kelliher
  2. Randy Lambreghts
  3. Qijun Xiang
  4. Christopher L Baker
  5. Jennifer J Loros
  6. Jay C Dunlap  Is a corresponding author
  1. Geisel School of Medicine at Dartmouth, United States
  2. The Jackson Laboratory, United States

Abstract

Circadian clocks in fungi and animals are driven by a functionally conserved transcription-translation feedback loop. In Neurospora crassa, negative feedback is executed by a complex of Frequency (FRQ), FRQ-interacting RNA helicase (FRH), and Casein Kinase I (CKI), which inhibits the activity of the clock's positive arm, the White Collar Complex (WCC). Here, we show that the prd-2 (period-2) gene, whose mutation is characterized by recessive inheritance of a long 26-hour period phenotype, encodes an RNA-binding protein that stabilizes the ck-1a transcript, resulting in CKI protein levels sufficient for normal rhythmicity. Moreover, by examining the molecular basis for the short circadian period of upf-1prd-6 mutants, we uncovered a strong influence of the Nonsense Mediated Decay pathway on CKI levels. The finding that circadian period defects in two classically-derived Neurospora clock mutants each arise from disruption of ck-1a regulation is consistent with circadian period being exquisitely sensitive to levels of casein kinase I.

Data availability

RNA-Sequencing data have been deposited in GEO under accession GSE155999

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Christina M Kelliher

    Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4554-1818
  2. Randy Lambreghts

    Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qijun Xiang

    Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher L Baker

    Genetics and Genomics, The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer J Loros

    Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jay C Dunlap

    Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
    For correspondence
    jay.dunlap@Dartmouth.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1577-0457

Funding

National Institutes of Health (F32 GM128252)

  • Christina M Kelliher

National Institutes of Health (R35 GM118021)

  • Jay C Dunlap

National Institutes of Health (R35 GM118022)

  • Jennifer J Loros

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: October 14, 2020
  2. Accepted: December 8, 2020
  3. Accepted Manuscript published: December 9, 2020 (version 1)
  4. Version of Record published: December 17, 2020 (version 2)
  5. Version of Record updated: December 23, 2020 (version 3)

Copyright

© 2020, Kelliher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,075
    views
  • 157
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christina M Kelliher
  2. Randy Lambreghts
  3. Qijun Xiang
  4. Christopher L Baker
  5. Jennifer J Loros
  6. Jay C Dunlap
(2020)
PRD-2 directly regulates casein kinase I and counteracts nonsense mediated decay in the Neurospora circadian clock
eLife 9:e64007.
https://doi.org/10.7554/eLife.64007

Share this article

https://doi.org/10.7554/eLife.64007

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.

    1. Genetics and Genomics
    2. Neuroscience
    Yifei Weng, Shiyi Zhou ... Coleen T Murphy
    Research Article

    Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.