Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function

  1. Erin J Golden
  2. Eric D Larson
  3. Lauren A Shechtman
  4. G Devon Trahan
  5. Dany Gaillard
  6. Timothy J Fellin
  7. Jennifer K Scott
  8. Kenneth L Jones
  9. Linda A Barlow  Is a corresponding author
  1. University of Colorado Anschutz Medical Campus, United States
  2. University of Oklahoma Health Sciences Center, United States

Abstract

Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth, and show SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell locomotion likely regulated by FOXA1;FOXA2, and show expression of these candidates is also altered by forced SHH expression. We present a new model where SHH promotes TRC differentiation by regulating changes in epithelial cell adhesion and migration.

Data availability

Sequencing data have been deposited in GEO under accession code GSE159941https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159941

Article and author information

Author details

  1. Erin J Golden

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eric D Larson

    Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren A Shechtman

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. G Devon Trahan

    Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dany Gaillard

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy J Fellin

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer K Scott

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenneth L Jones

    Cell Biology, University of Oklahoma Health Sciences Center, Oklahama City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Linda A Barlow

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    LINDA.BARLOW@CUANSCHUTZ.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7998-2219

Funding

National Institute on Deafness and Other Communication Disorders (R01DC012383)

  • Linda A Barlow

National Institute on Deafness and Other Communication Disorders (Postdoc fellowship F32DC015958)

  • Erin J Golden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Male and female mice were maintained, bred, and embryos and pups at the University of Colorado Anschutz Medical Campus (CU AMC) in accordance with approved protocols #00150 and #52815(02)1C by the Institutional Animal Care and Use Committee at CU AMC. All animals were euthanized via chilling and CO2 prior to tissue harvest to minimize suffering.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Publication history

  1. Received: October 14, 2020
  2. Accepted: May 18, 2021
  3. Accepted Manuscript published: May 19, 2021 (version 1)
  4. Version of Record published: June 2, 2021 (version 2)

Copyright

© 2021, Golden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,198
    Page views
  • 200
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin J Golden
  2. Eric D Larson
  3. Lauren A Shechtman
  4. G Devon Trahan
  5. Dany Gaillard
  6. Timothy J Fellin
  7. Jennifer K Scott
  8. Kenneth L Jones
  9. Linda A Barlow
(2021)
Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function
eLife 10:e64013.
https://doi.org/10.7554/eLife.64013

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Brian Silver, Kevin Gerrish, Erik Tokar
    Research Article

    Cell-free DNA (cfDNA) present in the bloodstream or other bodily fluids holds potential as a non-invasive diagnostic for early disease detection. However, it remains unclear what cfDNA markers might be produced in response to specific tissue-level events. Organoid systems present a tractable and efficient method for screening cfDNA markers. However, research investigating the release of cfDNA from organoids is limited. Here, we present a scalable method for high-throughput screening of cfDNA from cardiac organoids. We demonstrate that cfDNA is recoverable from cardiac organoids, and that cfDNA release is highest early in differentiation. Intriguingly, we observed that the fraction of cell-free mitochondrial DNA appeared to decrease as the organoids developed, suggesting a possible signature of cardiac organoid maturation, or other cardiac growth-related tissue-level events. We also observe alterations in the prevalence of specific genomic regions in cardiac organoid-derived cfDNA at different timepoints during growth. In addition, we identify cfDNA markers that were increased upon addition of cardiotoxic drugs, prior to the onset of tissue demise. Together, these results indicate that cardiac organoids may be a useful system towards the identification of candidate predictive cfDNA markers of cardiac tissue development and demise.

    1. Developmental Biology
    2. Neuroscience
    Sweta Parab, Olivia A Card ... Ryota L Matsuoka
    Research Article Updated

    Fenestrated and blood-brain barrier (BBB)-forming endothelial cells constitute major brain capillaries, and this vascular heterogeneity is crucial for region-specific neural function and brain homeostasis. How these capillary types emerge in a brain region-specific manner and subsequently establish intra-brain vascular heterogeneity remains unclear. Here, we performed a comparative analysis of vascularization across the zebrafish choroid plexuses (CPs), circumventricular organs (CVOs), and retinal choroid, and show common angiogenic mechanisms critical for fenestrated brain capillary formation. We found that zebrafish deficient for Gpr124, Reck, or Wnt7aa exhibit severely impaired BBB angiogenesis without any apparent defect in fenestrated capillary formation in the CPs, CVOs, and retinal choroid. Conversely, genetic loss of various Vegf combinations caused significant disruptions in Wnt7/Gpr124/Reck signaling-independent vascularization of these organs. The phenotypic variation and specificity revealed heterogeneous endothelial requirements for Vegfs-dependent angiogenesis during CP and CVO vascularization, identifying unexpected interplay of Vegfc/d and Vegfa in this process. Mechanistically, expression analysis and paracrine activity-deficient vegfc mutant characterization suggest that endothelial cells and non-neuronal specialized cell types present in the CPs and CVOs are major sources of Vegfs responsible for regionally restricted angiogenic interplay. Thus, brain region-specific presentations and interplay of Vegfc/d and Vegfa control emergence of fenestrated capillaries, providing insight into the mechanisms driving intra-brain vascular heterogeneity and fenestrated vessel formation in other organs.