Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function

  1. Erin J Golden
  2. Eric D Larson
  3. Lauren A Shechtman
  4. G Devon Trahan
  5. Dany Gaillard
  6. Timothy J Fellin
  7. Jennifer K Scott
  8. Kenneth L Jones
  9. Linda A Barlow  Is a corresponding author
  1. University of Colorado Anschutz Medical Campus, United States
  2. University of Oklahoma Health Sciences Center, United States

Abstract

Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth, and show SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell locomotion likely regulated by FOXA1;FOXA2, and show expression of these candidates is also altered by forced SHH expression. We present a new model where SHH promotes TRC differentiation by regulating changes in epithelial cell adhesion and migration.

Data availability

Sequencing data have been deposited in GEO under accession code GSE159941https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159941

Article and author information

Author details

  1. Erin J Golden

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eric D Larson

    Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren A Shechtman

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. G Devon Trahan

    Pediatrics, Section of Hematology, Oncology and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dany Gaillard

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy J Fellin

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer K Scott

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenneth L Jones

    Cell Biology, University of Oklahoma Health Sciences Center, Oklahama City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Linda A Barlow

    Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    LINDA.BARLOW@CUANSCHUTZ.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7998-2219

Funding

National Institute on Deafness and Other Communication Disorders (R01DC012383)

  • Linda A Barlow

National Institute on Deafness and Other Communication Disorders (Postdoc fellowship F32DC015958)

  • Erin J Golden

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Ethics

Animal experimentation: Male and female mice were maintained, bred, and embryos and pups at the University of Colorado Anschutz Medical Campus (CU AMC) in accordance with approved protocols #00150 and #52815(02)1C by the Institutional Animal Care and Use Committee at CU AMC. All animals were euthanized via chilling and CO2 prior to tissue harvest to minimize suffering.

Version history

  1. Received: October 14, 2020
  2. Accepted: May 18, 2021
  3. Accepted Manuscript published: May 19, 2021 (version 1)
  4. Version of Record published: June 2, 2021 (version 2)

Copyright

© 2021, Golden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,542
    views
  • 243
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin J Golden
  2. Eric D Larson
  3. Lauren A Shechtman
  4. G Devon Trahan
  5. Dany Gaillard
  6. Timothy J Fellin
  7. Jennifer K Scott
  8. Kenneth L Jones
  9. Linda A Barlow
(2021)
Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function
eLife 10:e64013.
https://doi.org/10.7554/eLife.64013

Share this article

https://doi.org/10.7554/eLife.64013

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Samuel C Griffiths, Jia Tan ... Hsin-Yi Henry Ho
    Research Article Updated

    The receptor tyrosine kinase ROR2 mediates noncanonical WNT5A signaling to orchestrate tissue morphogenetic processes, and dysfunction of the pathway causes Robinow syndrome, brachydactyly B, and metastatic diseases. The domain(s) and mechanisms required for ROR2 function, however, remain unclear. We solved the crystal structure of the extracellular cysteine-rich (CRD) and Kringle (Kr) domains of ROR2 and found that, unlike other CRDs, the ROR2 CRD lacks the signature hydrophobic pocket that binds lipids/lipid-modified proteins, such as WNTs, suggesting a novel mechanism of ligand reception. Functionally, we showed that the ROR2 CRD, but not other domains, is required and minimally sufficient to promote WNT5A signaling, and Robinow mutations in the CRD and the adjacent Kr impair ROR2 secretion and function. Moreover, using function-activating and -perturbing antibodies against the Frizzled (FZ) family of WNT receptors, we demonstrate the involvement of FZ in WNT5A-ROR signaling. Thus, ROR2 acts via its CRD to potentiate the function of a receptor super-complex that includes FZ to transduce WNT5A signals.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.