Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon

  1. Salah A Baker  Is a corresponding author
  2. Wesley A Leigh
  3. Guillermo Del Valle
  4. Inigo F De Yturriaga
  5. Sean M Ward
  6. Caroline A Cobine
  7. Bernard T Drumm
  8. Kenton M Sanders
  1. University of Nevada, Reno, United States
  2. Institute of Technology, Dundalk, Ireland
  3. University of Nevada, United States

Abstract

Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of SMCs using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+ transients ~15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+ firing patterns and drive smooth muscle activity and overall colonic contractions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Salah A Baker

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    For correspondence
    sabubaker@med.unr.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1514-6876
  2. Wesley A Leigh

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guillermo Del Valle

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Inigo F De Yturriaga

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean M Ward

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline A Cobine

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernard T Drumm

    Department of Life & Health Science,, Institute of Technology, Dundalk, Dundalk, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenton M Sanders

    Physiology and Cell Biology, University of Nevada, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-120759)

  • Salah A Baker

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-120759)

  • Kenton M Sanders

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-078736)

  • Caroline A Cobine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animals used, protocols performed and procedures in this study were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Use and Care Committee at the University of Nevada, Reno (IACUC; Protocol# 00053).

Copyright

© 2021, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,215
    views
  • 244
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salah A Baker
  2. Wesley A Leigh
  3. Guillermo Del Valle
  4. Inigo F De Yturriaga
  5. Sean M Ward
  6. Caroline A Cobine
  7. Bernard T Drumm
  8. Kenton M Sanders
(2021)
Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon
eLife 10:e64099.
https://doi.org/10.7554/eLife.64099

Share this article

https://doi.org/10.7554/eLife.64099

Further reading

    1. Cell Biology
    Kaiqiang Zhao, Zhongjun Zhou
    Insight

    The accumulation of SIRT4 in the nuclei of kidney cells drives kidney fibrosis, so blocking the movement of this protein could be a potential therapeutic strategy against fibrosis.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.