Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon

  1. Salah A Baker  Is a corresponding author
  2. Wesley A Leigh
  3. Guillermo Del Valle
  4. Inigo F De Yturriaga
  5. Sean M Ward
  6. Caroline A Cobine
  7. Bernard T Drumm
  8. Kenton M Sanders
  1. University of Nevada, Reno, United States
  2. Institute of Technology, Dundalk, Ireland
  3. University of Nevada, United States

Abstract

Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of SMCs using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+ transients ~15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+ firing patterns and drive smooth muscle activity and overall colonic contractions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Salah A Baker

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    For correspondence
    sabubaker@med.unr.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1514-6876
  2. Wesley A Leigh

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guillermo Del Valle

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Inigo F De Yturriaga

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean M Ward

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline A Cobine

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernard T Drumm

    Department of Life & Health Science,, Institute of Technology, Dundalk, Dundalk, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenton M Sanders

    Physiology and Cell Biology, University of Nevada, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-120759)

  • Salah A Baker

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-120759)

  • Kenton M Sanders

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-078736)

  • Caroline A Cobine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animals used, protocols performed and procedures in this study were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Use and Care Committee at the University of Nevada, Reno (IACUC; Protocol# 00053).

Copyright

© 2021, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,327
    views
  • 252
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salah A Baker
  2. Wesley A Leigh
  3. Guillermo Del Valle
  4. Inigo F De Yturriaga
  5. Sean M Ward
  6. Caroline A Cobine
  7. Bernard T Drumm
  8. Kenton M Sanders
(2021)
Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon
eLife 10:e64099.
https://doi.org/10.7554/eLife.64099

Share this article

https://doi.org/10.7554/eLife.64099

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.