Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon

  1. Salah A Baker  Is a corresponding author
  2. Wesley A Leigh
  3. Guillermo Del Valle
  4. Inigo F De Yturriaga
  5. Sean M Ward
  6. Caroline A Cobine
  7. Bernard T Drumm
  8. Kenton M Sanders
  1. University of Nevada, Reno, United States
  2. Institute of Technology, Dundalk, Ireland
  3. University of Nevada, United States

Abstract

Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of SMCs using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+ transients ~15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+ firing patterns and drive smooth muscle activity and overall colonic contractions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Salah A Baker

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    For correspondence
    sabubaker@med.unr.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1514-6876
  2. Wesley A Leigh

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Guillermo Del Valle

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Inigo F De Yturriaga

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean M Ward

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline A Cobine

    Physiology and Cell Biology, University of Nevada, Reno, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernard T Drumm

    Department of Life & Health Science,, Institute of Technology, Dundalk, Dundalk, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kenton M Sanders

    Physiology and Cell Biology, University of Nevada, Reno, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-120759)

  • Salah A Baker

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-120759)

  • Kenton M Sanders

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK-078736)

  • Caroline A Cobine

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark T Nelson, University of Vermont, United States

Ethics

Animal experimentation: The animals used, protocols performed and procedures in this study were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Use and Care Committee at the University of Nevada, Reno (IACUC; Protocol# 00053).

Version history

  1. Received: October 16, 2020
  2. Accepted: January 4, 2021
  3. Accepted Manuscript published: January 5, 2021 (version 1)
  4. Version of Record published: January 13, 2021 (version 2)

Copyright

© 2021, Baker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,112
    views
  • 224
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Salah A Baker
  2. Wesley A Leigh
  3. Guillermo Del Valle
  4. Inigo F De Yturriaga
  5. Sean M Ward
  6. Caroline A Cobine
  7. Bernard T Drumm
  8. Kenton M Sanders
(2021)
Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon
eLife 10:e64099.
https://doi.org/10.7554/eLife.64099

Share this article

https://doi.org/10.7554/eLife.64099

Further reading

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.

    1. Cell Biology
    Rita De Gasperi, Laszlo Csernoch ... Christopher P Cardozo
    Research Article

    Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.