Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size

  1. Alessandro Bonfini
  2. Adam J Dobson
  3. David Duneau
  4. Jonathan Revah
  5. Xi Liu
  6. Philip Houtz
  7. Nicolas Buchon  Is a corresponding author
  1. Cornell University, United States
  2. University of Glasgow, United Kingdom
  3. CNRS, UMR5174 EDB (Laboratoire Évolution and Diversité Biologique, France

Abstract

The gut is the primary interface between an animal and food, but how it adapts to qualitative dietary variation is poorly defined. We find that the Drosophila midgut plastically resizes following changes in dietary composition. A panel of nutrients collectively promote gut growth, which sugar opposes. Diet influences absolute and relative levels of enterocyte loss and stem cell proliferation, which together determine cell numbers. Diet also influences enterocyte size. A high sugar diet inhibits translation and uncouples ISC proliferation from expression of niche-derived signals but, surprisingly, rescuing these effects genetically was not sufficient to modify diet's impact on midgut size. However, when stem cell proliferation was deficient, diet's impact on enterocyte size was enhanced, and reducing enterocyte-autonomous TOR signaling was sufficient to attenuate diet-dependent midgut resizing. These data clarify the complex relationships between nutrition, epithelial dynamics, and cell size, and reveal a new mode of plastic, diet-dependent organ resizing.

Data availability

Data have been submitted with an ArrayExpress accession E-MTAB-10812.

Article and author information

Author details

  1. Alessandro Bonfini

    Department of Entomology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6642-8665
  2. Adam J Dobson

    Molecular Cell & Systems Biology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1541-927X
  3. David Duneau

    CNRS, UMR5174 EDB (Laboratoire Évolution and Diversité Biologique, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8323-1511
  4. Jonathan Revah

    Department of Entomology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xi Liu

    Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Philip Houtz

    Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicolas Buchon

    Department of Entomology, Cornell University, Ithaca, United States
    For correspondence
    nicolas.buchon@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3636-8387

Funding

National Institutes of Health (1R21AG065733-01,1R01AI148541-01A1)

  • Alessandro Bonfini
  • Jonathan Revah
  • Xi Liu
  • Philip Houtz
  • Nicolas Buchon

National Science Foundation (IOS-1656118,IOS-1653021)

  • Alessandro Bonfini
  • Jonathan Revah
  • Xi Liu
  • Philip Houtz
  • Nicolas Buchon

UK Research and Innovation (MR/S033939/1)

  • Adam J Dobson

Agence Nationale de la Recherche (ANR-10-LABX-41; ANR-11-IDEX-0002-02)

  • David Duneau

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lucy Erin O'Brien, Stanford University School of Medicine, United States

Publication history

  1. Received: December 16, 2020
  2. Accepted: September 22, 2021
  3. Accepted Manuscript published: September 23, 2021 (version 1)
  4. Version of Record published: October 19, 2021 (version 2)

Copyright

© 2021, Bonfini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,174
    Page views
  • 411
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessandro Bonfini
  2. Adam J Dobson
  3. David Duneau
  4. Jonathan Revah
  5. Xi Liu
  6. Philip Houtz
  7. Nicolas Buchon
(2021)
Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size
eLife 10:e64125.
https://doi.org/10.7554/eLife.64125

Further reading

    1. Developmental Biology
    Tsz Long Chu, Peikai Chen ... Kathryn Song Eng Cheah
    Research Article Updated

    Bone homeostasis is regulated by hormones such as parathyroid hormone (PTH). While PTH can stimulate osteo-progenitor expansion and bone synthesis, how the PTH-signaling intensity in progenitors is controlled is unclear. Endochondral bone osteoblasts arise from perichondrium-derived osteoprogenitors and hypertrophic chondrocytes (HC). We found, via single-cell transcriptomics, that HC-descendent cells activate membrane-type 1 metalloproteinase 14 (MMP14) and the PTH pathway as they transition to osteoblasts in neonatal and adult mice. Unlike Mmp14 global knockouts, postnatal day 10 (p10) HC lineage-specific Mmp14 null mutants (Mmp14ΔHC) produce more bone. Mechanistically, MMP14 cleaves the extracellular domain of PTH1R, dampening PTH signaling, and consistent with the implied regulatory role, in Mmp14ΔHC mutants, PTH signaling is enhanced. We found that HC-derived osteoblasts contribute ~50% of osteogenesis promoted by treatment with PTH 1–34, and this response was amplified in Mmp14ΔHC. MMP14 control of PTH signaling likely applies also to both HC- and non-HC-derived osteoblasts because their transcriptomes are highly similar. Our study identifies a novel paradigm of MMP14 activity-mediated modulation of PTH signaling in the osteoblast lineage, contributing new insights into bone metabolism with therapeutic significance for bone-wasting diseases.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Zengdi Zhang, Zan Huang ... Hai-Bin Ruan
    Research Article Updated

    In mammals, interactions between the bone marrow (BM) stroma and hematopoietic progenitors contribute to bone-BM homeostasis. Perinatal bone growth and ossification provide a microenvironment for the transition to definitive hematopoiesis; however, mechanisms and interactions orchestrating the development of skeletal and hematopoietic systems remain largely unknown. Here, we establish intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modification as a posttranslational switch that dictates the differentiation fate and niche function of early BM stromal cells (BMSCs). By modifying and activating RUNX2, O-GlcNAcylation promotes osteogenic differentiation of BMSCs and stromal IL-7 expression to support lymphopoiesis. In contrast, C/EBPβ-dependent marrow adipogenesis and expression of myelopoietic stem cell factor (SCF) is inhibited by O-GlcNAcylation. Ablating O-GlcNAc transferase (OGT) in BMSCs leads to impaired bone formation, increased marrow adiposity, as well as defective B-cell lymphopoiesis and myeloid overproduction in mice. Thus, the balance of osteogenic and adipogenic differentiation of BMSCs is determined by reciprocal O-GlcNAc regulation of transcription factors, which simultaneously shapes the hematopoietic niche.