1. Neuroscience
Download icon

Instantaneous movement-unrelated midbrain activity modifies ongoing eye movements

  1. Antimo Buonocore  Is a corresponding author
  2. Xiaoguang Tian
  3. Fatemeh Khademi
  4. Ziad M Hafed
  1. Tübingen University, Germany
Research Article
  • Cited 1
  • Views 655
  • Annotations
Cite this article as: eLife 2021;10:e64150 doi: 10.7554/eLife.64150

Abstract

At any moment in time, new information is sampled from the environment and interacts with ongoing brain state. Often, such interaction takes place within individual circuits that are capable of both mediating the internally ongoing plan as well as representing exogenous sensory events. Here we investigated how sensory-driven neural activity can be integrated, very often in the same neuron types, into ongoing saccade motor commands. Despite the ballistic nature of saccades, visually-induced action potentials in the rhesus macaque superior colliculus (SC), a structure known to drive eye movements, not only occurred intra-saccadically, but they were also associated with highly predictable modifications of ongoing eye movements. Such predictable modifications reflected a simultaneity of movement-related discharge at one SC site and visually-induced activity at another. Our results suggest instantaneous readout of the SC during movement generation, irrespective of activity source, and they explain a significant component of kinematic variability of motor outputs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Antimo Buonocore

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    For correspondence
    antimo.buonocore@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3917-510X
  2. Xiaoguang Tian

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Fatemeh Khademi

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ziad M Hafed

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9968-119X

Funding

Deutsche Forschungsgemeinschaft (FOR1847 (project A6: HA6749/2-1))

  • Antimo Buonocore
  • Ziad M Hafed

Deutsche Forschungsgemeinschaft (DFG EXC307)

  • Antimo Buonocore
  • Ziad M Hafed

Deutsche Forschungsgemeinschaft (SFB1233; TP 11; project number 276693517)

  • Fatemeh Khademi
  • Ziad M Hafed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments were approved (licenses: CIN3/13; CIN4/19G) by ethics committees at the regional governmental offices of the city of Tuebingen and were in accordance with European Union guidelines on animal research and the associated implementations of these guidelines in German law.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Publication history

  1. Received: October 19, 2020
  2. Accepted: May 5, 2021
  3. Accepted Manuscript published: May 6, 2021 (version 1)
  4. Version of Record published: May 24, 2021 (version 2)

Copyright

© 2021, Buonocore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 655
    Page views
  • 90
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article Updated

    Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.

    1. Neuroscience
    Renée S Koolschijn et al.
    Research Article Updated

    The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism.