Instantaneous movement-unrelated midbrain activity modifies ongoing eye movements

  1. Antimo Buonocore  Is a corresponding author
  2. Xiaoguang Tian
  3. Fatemeh Khademi
  4. Ziad M Hafed
  1. Tübingen University, Germany

Abstract

At any moment in time, new information is sampled from the environment and interacts with ongoing brain state. Often, such interaction takes place within individual circuits that are capable of both mediating the internally ongoing plan as well as representing exogenous sensory events. Here we investigated how sensory-driven neural activity can be integrated, very often in the same neuron types, into ongoing saccade motor commands. Despite the ballistic nature of saccades, visually-induced action potentials in the rhesus macaque superior colliculus (SC), a structure known to drive eye movements, not only occurred intra-saccadically, but they were also associated with highly predictable modifications of ongoing eye movements. Such predictable modifications reflected a simultaneity of movement-related discharge at one SC site and visually-induced activity at another. Our results suggest instantaneous readout of the SC during movement generation, irrespective of activity source, and they explain a significant component of kinematic variability of motor outputs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Antimo Buonocore

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    For correspondence
    antimo.buonocore@cin.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3917-510X
  2. Xiaoguang Tian

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Fatemeh Khademi

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Ziad M Hafed

    Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9968-119X

Funding

Deutsche Forschungsgemeinschaft (FOR1847 (project A6: HA6749/2-1))

  • Antimo Buonocore
  • Ziad M Hafed

Deutsche Forschungsgemeinschaft (DFG EXC307)

  • Antimo Buonocore
  • Ziad M Hafed

Deutsche Forschungsgemeinschaft (SFB1233; TP 11; project number 276693517)

  • Fatemeh Khademi
  • Ziad M Hafed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiments were approved (licenses: CIN3/13; CIN4/19G) by ethics committees at the regional governmental offices of the city of Tuebingen and were in accordance with European Union guidelines on animal research and the associated implementations of these guidelines in German law.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Publication history

  1. Received: October 19, 2020
  2. Accepted: May 5, 2021
  3. Accepted Manuscript published: May 6, 2021 (version 1)
  4. Version of Record published: May 24, 2021 (version 2)

Copyright

© 2021, Buonocore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 787
    Page views
  • 108
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antimo Buonocore
  2. Xiaoguang Tian
  3. Fatemeh Khademi
  4. Ziad M Hafed
(2021)
Instantaneous movement-unrelated midbrain activity modifies ongoing eye movements
eLife 10:e64150.
https://doi.org/10.7554/eLife.64150

Further reading

    1. Neuroscience
    Liqiang Chen et al.
    Short Report

    The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.