Abstract

Meningitis is a potentially life-threatening infection characterized by the inflammation of the leptomeningeal membranes. Many different viral and bacterial pathogens can cause meningitis, with differences in mortality rates, risk of developing neurological sequelae and treatment options. Here we constructed a compendium of digital cerebrospinal fluid (CSF) proteome maps to define pathogen-specific host response patterns in meningitis. The results revealed a drastic and pathogen-type specific influx of tissue-, cell- and plasma proteins in the CSF, where in particular a large increase of neutrophil derived proteins in the CSF correlated with acute bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked reduction of brain-enriched proteins. Generation of a multi-protein LASSO regression model resulted in an 18-protein panel of cell and tissue associated proteins capable of classifying acute bacterial meningitis and viral meningitis. The same protein panel also enabled classification of tick-borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The work provides insights into pathogen specific host response patterns in CSF from different disease etiologies to support future classification of pathogen-type based on host response patterns in meningitis.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD023174.

Article and author information

Author details

  1. Anahita Bakochi

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8144-8525
  2. Tirthankar Mohanty

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul Theodor Pyl

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Carlos Alberto Gueto-Tettay

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Malmström

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9885-9312
  6. Adam Linder

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Johan Malmström

    Department of Clinical Sciences, Lund University, Lund, Sweden
    For correspondence
    johan.malmstrom@med.lu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2889-7169

Funding

Knut och Alice Wallenbergs Stiftelse (2017.0271)

  • Johan Malmström

Vetenskapsrådet (2015-02481)

  • Johan Malmström

Vetenskapsrådet (2018-05795)

  • Johan Malmström

Vetenskapsrådet (2018-05973)

  • Johan Malmström

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The medical ethics committees (Institutional Review Boards) of the Lund University approved of the study (decision number 790/2005 and 2016/672), and all samples were taken with the informed consent of the participants or next of kin.

Reviewing Editor

  1. Benjamin F Cravatt, The Scripps Research Institute, United States

Publication history

  1. Received: October 20, 2020
  2. Accepted: April 4, 2021
  3. Accepted Manuscript published: April 6, 2021 (version 1)
  4. Version of Record published: April 13, 2021 (version 2)

Copyright

© 2021, Bakochi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,113
    Page views
  • 148
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anahita Bakochi
  2. Tirthankar Mohanty
  3. Paul Theodor Pyl
  4. Carlos Alberto Gueto-Tettay
  5. Lars Malmström
  6. Adam Linder
  7. Johan Malmström
(2021)
Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis
eLife 10:e64159.
https://doi.org/10.7554/eLife.64159

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Olaya Rendueles, Jorge AM Moura de Sousa, Eduardo PC Rocha
    Research Article

    Many bacterial genomes carry prophages whose induction can eliminate competitors. In response, bacteria may become resistant by modifying surface receptors, by lysogenization, or by other poorly known processes. All these mechanisms affect bacterial fitness and population dynamics. To understand the evolution of phage resistance, we co-cultivated a phage-sensitive strain (BJ1) and a poly-lysogenic Klebsiella pneumoniae strain (ST14) under different phage pressures. The population yield remained stable after 30 days. Surprisingly, the initially sensitive strain remained in all populations and its frequency was highest when phage pressure was strongest. Resistance to phages in these populations emerged initially through mutations preventing capsule biosynthesis. Protection through lysogeny was rarely observed because the lysogens have increased death rates due to prophage induction. Unexpectedly, the adaptation process changed at longer time scales the frequency of capsulated cells in BJ1 populations increased again, because the production of capsule was fine-tuned, reducing the ability of phage to absorb. Contrary to the lysogens, these capsulated resistant clones are pan-resistant to a large panel of phages. Intriguingly, some clones exhibited transient non-genetic resistance to phages, suggesting an important role of phenotypic resistance in coevolving populations. Our results show that interactions between lysogens and sensitive strains are shaped by antagonistic co-evolution between phages and bacteria. These processes may involve key physiological traits, such as the capsule, and depend on the time frame of the evolutionary process. At short time scales, simple and costly inactivating mutations are adaptive, but in the long-term, changes drawing more favorable trade-offs between resistance to phages and cell fitness become prevalent.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Taylor B Engdahl, Elad Binshtein ... James E Crowe Jr.
    Research Article

    Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.