Abstract

Meningitis is a potentially life-threatening infection characterized by the inflammation of the leptomeningeal membranes. Many different viral and bacterial pathogens can cause meningitis, with differences in mortality rates, risk of developing neurological sequelae and treatment options. Here we constructed a compendium of digital cerebrospinal fluid (CSF) proteome maps to define pathogen-specific host response patterns in meningitis. The results revealed a drastic and pathogen-type specific influx of tissue-, cell- and plasma proteins in the CSF, where in particular a large increase of neutrophil derived proteins in the CSF correlated with acute bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked reduction of brain-enriched proteins. Generation of a multi-protein LASSO regression model resulted in an 18-protein panel of cell and tissue associated proteins capable of classifying acute bacterial meningitis and viral meningitis. The same protein panel also enabled classification of tick-borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The work provides insights into pathogen specific host response patterns in CSF from different disease etiologies to support future classification of pathogen-type based on host response patterns in meningitis.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD023174.

Article and author information

Author details

  1. Anahita Bakochi

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8144-8525
  2. Tirthankar Mohanty

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul Theodor Pyl

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Carlos Alberto Gueto-Tettay

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Malmström

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9885-9312
  6. Adam Linder

    Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Johan Malmström

    Department of Clinical Sciences, Lund University, Lund, Sweden
    For correspondence
    johan.malmstrom@med.lu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2889-7169

Funding

Knut och Alice Wallenbergs Stiftelse (2017.0271)

  • Johan Malmström

Vetenskapsrådet (2015-02481)

  • Johan Malmström

Vetenskapsrådet (2018-05795)

  • Johan Malmström

Vetenskapsrådet (2018-05973)

  • Johan Malmström

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The medical ethics committees (Institutional Review Boards) of the Lund University approved of the study (decision number 790/2005 and 2016/672), and all samples were taken with the informed consent of the participants or next of kin.

Copyright

© 2021, Bakochi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,442
    views
  • 206
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anahita Bakochi
  2. Tirthankar Mohanty
  3. Paul Theodor Pyl
  4. Carlos Alberto Gueto-Tettay
  5. Lars Malmström
  6. Adam Linder
  7. Johan Malmström
(2021)
Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis
eLife 10:e64159.
https://doi.org/10.7554/eLife.64159

Share this article

https://doi.org/10.7554/eLife.64159

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.