Introgression shapes fruit color convergence in invasive Galápagos tomato

  1. Matthew JS Gibson  Is a corresponding author
  2. Maria de Lourdes Torres
  3. Yaniv Brandvain
  4. Leonie Moyle
  1. Indiana University, United States
  2. Universidad San Francisco de Quito; Galapagos Science Center, Ecuador
  3. University of Minnesota, United States

Abstract

Invasive species represent one of the foremost risks to global biodiversity. Here, we use population genomics to evaluate the history and consequences of an invasion of wild tomato-Solanum pimpinellifolium-onto the Galápagos islands from continental South America. Using >300 archipelago and mainland collections, we infer this invasion was recent and largely the result of a single event from central Ecuador. Patterns of ancestry within the genomes of invasive plants also reveal post-colonization hybridization and introgression between S. pimpinellifolium and the closely related Galapagos endemic Solanum cheesmaniae. Of admixed invasive individuals, those that carry endemic alleles at one of two different carotenoid biosynthesis loci also have orange fruits-characteristic of the endemic species-instead of typical red S. pimpinellifolium fruits. We infer that introgression of two independent fruit color loci explains this observed trait convergence, suggesting that selection has favored repeated transitions of red to orange fruits on the Galapagos.

Data availability

Raw, demultiplexed ddRAD reads have been deposited under NCBI BioProject PRJNA661300 and will be available once processed by NCBI. Genotype files, associated datasets, and analysis scripts have been deposited on Dryad (https://doi.org/10.5061/dryad.2v6wwpzkm).Additionally, data posted to Dryad can also be accessed at https://github.com/gibsonMatt/galtom.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Matthew JS Gibson

    Department of Biology, Indiana University, Bloomington, United States
    For correspondence
    gibsomat@indiana.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7855-1628
  2. Maria de Lourdes Torres

    Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal; Universidad San Francisco de Quito and University of North Carolina at Chapel Hill, Universidad San Francisco de Quito; Galapagos Science Center, Quito, Ecuador
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7207-4568
  3. Yaniv Brandvain

    University of Minnesota, St Paul, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leonie Moyle

    Department of Biology, Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (IOS 1127059)

  • Leonie Moyle

Indiana University Bloomington (Brackenridge)

  • Matthew JS Gibson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hernán A. Burbano, University College London, United Kingdom

Version history

  1. Received: October 20, 2020
  2. Accepted: June 23, 2021
  3. Accepted Manuscript published: June 24, 2021 (version 1)
  4. Version of Record published: July 21, 2021 (version 2)

Copyright

© 2021, Gibson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,728
    Page views
  • 263
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew JS Gibson
  2. Maria de Lourdes Torres
  3. Yaniv Brandvain
  4. Leonie Moyle
(2021)
Introgression shapes fruit color convergence in invasive Galápagos tomato
eLife 10:e64165.
https://doi.org/10.7554/eLife.64165

Share this article

https://doi.org/10.7554/eLife.64165

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Jonathan E Phillips, Duojia Pan
    Research Advance

    The genomes of close unicellular relatives of animals encode orthologs of many genes that regulate animal development. However, little is known about the function of such genes in unicellular organisms or the evolutionary process by which these genes came to function in multicellular development. The Hippo pathway, which regulates cell proliferation and tissue size in animals, is present in some of the closest unicellular relatives of animals, including the amoeboid organism Capsaspora owczarzaki. We previously showed that the Capsaspora ortholog of the Hippo pathway nuclear effector Yorkie/YAP/TAZ (coYki) regulates actin dynamics and the three-dimensional morphology of Capsaspora cell aggregates, but is dispensable for cell proliferation control (Phillips et al., 2022). However, the function of upstream Hippo pathway components, and whether and how they regulate coYki in Capsaspora, remained unknown. Here, we analyze the function of the upstream Hippo pathway kinases coHpo and coWts in Capsaspora by generating mutant lines for each gene. Loss of either kinase results in increased nuclear localization of coYki, indicating an ancient, premetazoan origin of this Hippo pathway regulatory mechanism. Strikingly, we find that loss of either kinase causes a contractile cell behavior and increased density of cell packing within Capsaspora aggregates. We further show that this increased cell density is not due to differences in proliferation, but rather actomyosin-dependent changes in the multicellular architecture of aggregates. Given its well-established role in cell density-regulated proliferation in animals, the increased density of cell packing in coHpo and coWts mutants suggests a shared and possibly ancient and conserved function of the Hippo pathway in cell density control. Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway kinase cascade and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner.

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Zachary Paul Billman, Stephen Bela Kovacs ... Edward A Miao
    Research Article

    Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA–D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.