Confinement discerns swarmers from planktonic bacteria

  1. Weijie Chen
  2. Neha Mani
  3. Hamid Karani
  4. Hao Li
  5. Sridhar Mani
  6. Jay X Tang  Is a corresponding author
  1. Brown University, United States
  2. Albert Einstein College of Medicine, United States

Abstract

Powered by flagella, many bacterial species exhibit collective motion on a solid surface commonly known as swarming. As a natural example of active matter, swarming is also an essential biological phenotype associated with virulence, chemotaxis, and host pathogenesis. Physical changes like cell elongation and hyper flagellation have been shown to accompany the swarming phenotype. Less studied, however, are the contrasts of collective motion between the swarming cells and their counterpart planktonic cells of comparable cell density. Here, we show that confining bacterial movement in circular microwells allows distinguishing bacterial swarming from collective swimming. On a soft agar plate, a novel bacterial strain Enterobacter sp. SM3 in swarming and planktonic states exhibited different motion patterns when confined to circular microwells of a specific range of sizes. When the confinement diameter was between 40 μm and 90 μm, swarming SM3 formed a single swirl motion pattern in the microwells whereas planktonic SM3 formed multiple swirls. Similar differential behavior is observed across several other species of gram-negative bacteria. We also observed 'rafting behavior' of swarming bacteria upon dilution. We hypothesize that the rafting behavior might account for the motion pattern difference. We were able to predict these experimental features via numerical simulations where swarming cells are modeled with stronger cell-cell alignment interaction. Our experimental design using PDMS microchip disk arrays enabled us to observe bacterial swarming on murine intestinal surface suggesting a new method for characterizing bacterial swarming under complex environments, such as in polymicrobial niches, and for in vivo swarming exploration.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source code files have been provided for Figure 5.

Article and author information

Author details

  1. Weijie Chen

    Brown University, Providence, United States
    Competing interests
    Weijie Chen, Weijie Chen, Neha Mani, Jay X. Tang, and Sridhar Mani filed a U.S. patent application (Application No. 63033369)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7105-5645
  2. Neha Mani

    Brown University, Providence, United States
    Competing interests
    Neha Mani, Weijie Chen, Neha Mani, Jay X. Tang, and Sridhar Mani filed a U.S. patent application (Application No. 63033369)..
  3. Hamid Karani

    Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  4. Hao Li

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Sridhar Mani

    Albert Einstein College of Medicine, New York, United States
    Competing interests
    Sridhar Mani, Weijie Chen, Neha Mani, Jay X. Tang, and Sridhar Mani filed a U.S. patent application (Application No. 63033369)..
  6. Jay X Tang

    Brown University, Providence, United States
    For correspondence
    jay_tang@brown.edu
    Competing interests
    Jay X Tang, Weijie Chen, Neha Mani, Jay X. Tang, and Sridhar Mani filed a U.S. patent application (Application No. 63033369)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1022-4337

Funding

National Institutes of Health (R01CA222469)

  • Sridhar Mani

National Institutes of Health (ES030197)

  • Sridhar Mani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Ethics

Animal experimentation: The animal tissue samples were acquired from Albert Einstein College of Medicine in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. This study was approved by the Institute of Animal Studies at the Albert Einstein College of Medicine, Inc (IACUC # 20160706 & 00001172).

Version history

  1. Received: October 22, 2020
  2. Accepted: April 21, 2021
  3. Accepted Manuscript published: April 22, 2021 (version 1)
  4. Version of Record published: May 11, 2021 (version 2)

Copyright

© 2021, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,504
    Page views
  • 234
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weijie Chen
  2. Neha Mani
  3. Hamid Karani
  4. Hao Li
  5. Sridhar Mani
  6. Jay X Tang
(2021)
Confinement discerns swarmers from planktonic bacteria
eLife 10:e64176.
https://doi.org/10.7554/eLife.64176

Share this article

https://doi.org/10.7554/eLife.64176

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Fabien Duveau, Céline Cordier ... Pascal Hersen
    Research Article

    Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.

    1. Physics of Living Systems
    Josep-Maria Armengol-Collado, Livio Nicola Carenza, Luca Giomi
    Research Article Updated

    We formulate a hydrodynamic theory of confluent epithelia: i.e. monolayers of epithelial cells adhering to each other without gaps. Taking advantage of recent progresses toward establishing a general hydrodynamic theory of p-atic liquid crystals, we demonstrate that collectively migrating epithelia feature both nematic (i.e. p = 2) and hexatic (i.e. p = 6) orders, with the former being dominant at large and the latter at small length scales. Such a remarkable multiscale liquid crystal order leaves a distinct signature in the system’s structure factor, which exhibits two different power-law scaling regimes, reflecting both the hexagonal geometry of small cells clusters and the uniaxial structure of the global cellular flow. We support these analytical predictions with two different cell-resolved models of epithelia – i.e. the self-propelled Voronoi model and the multiphase field model – and highlight how momentum dissipation and noise influence the range of fluctuations at small length scales, thereby affecting the degree of cooperativity between cells. Our construction provides a theoretical framework to conceptualize the recent observation of multiscale order in layers of Madin–Darby canine kidney cells and pave the way for further theoretical developments.