In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission

  1. Kelsey A Haugh
  2. Mark S Ladinsky
  3. Irfan Ullah
  4. Helen M Stone
  5. Ruoxi Pi
  6. Alexandre Gilardet
  7. Michael W Grunst
  8. Priti Kumar
  9. Pamela J Bjorkman
  10. Walther Mothes  Is a corresponding author
  11. Pradeep D Uchil  Is a corresponding author
  1. Yale University, School of Medicine, United States
  2. California Institute of Technology, United States
  3. Yale University, United States
  4. Yale University School of Medicine, United States

Abstract

Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer's Patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood- and milk-borne retroviruses spanning three routes, was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue resident sentinel macrophages for establishing infection.

Data availability

Data is plotted as individual points wherever possible. We can provide Graphpad prism files that was used to plot all the graphs for each figure upon request. Raw datasets are freely available upon request. Interested parties should contact pradeep.uchil@yale.edu, walther.mothes@yale.edu , and we will place requested dataset onto an externally accessible Yale Box Server. Requestors will then be provided with a direct URL link from which they can download the files at their convenience. All the images acquired using confocal microscopy are available at Dryad doi:10.5061/dryad.hhmgqnkgw.

The following data sets were generated

Article and author information

Author details

  1. Kelsey A Haugh

    Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Mark S Ladinsky

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1036-3513
  3. Irfan Ullah

    Department of Internal Medicine, Section of Infectious Diseases, Yale University, School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  4. Helen M Stone

    Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Ruoxi Pi

    Microbial Pathogenesis, Yale University, School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Alexandre Gilardet

    Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Michael W Grunst

    Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Priti Kumar

    Department of Internal Medicine, Section of Infectious diseases, Yale University, School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  9. Pamela J Bjorkman

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    Pamela J Bjorkman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2277-3990
  10. Walther Mothes

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    For correspondence
    walther.mothes@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3367-7240
  11. Pradeep D Uchil

    Department of Microbial Pathogenesis, Yale University, School of Medicine, New Haven, United States
    For correspondence
    pradeep.uchil@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7236-858X

Funding

National Cancer Institute (R01 CA098727)

  • Walther Mothes

National Institute of Allergy and Infectious Diseases (5P50AI150464-14)

  • Pamela J Bjorkman
  • Walther Mothes

National Institute of Allergy and Infectious Diseases (5R33AI122384-05)

  • Priti Kumar

National Institute of Allergy and Infectious Diseases (5R01AI145164-03)

  • Priti Kumar

National Institute of Allergy and Infectious Diseases (T32AI055403)

  • Kelsey A Haugh
  • Priti Kumar
  • Walther Mothes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Institutional Animal Care and Use Committees (IACUC) protocols 2020-10649 and Institutional Biosafety Committee of Yale University (IBSCYU). All the animals were housed under specific pathogen-free conditions in the facilities provided and supported by Yale Animal Resources Center (YARC). All IVIS imaging, blood draw and virus inoculation experiments were done under anesthesia using regulated flow of isoflurane:oxygen mix to minimize pain and discomfort to the animals. Animals were housed under specific pathogen-free conditions in the Yale Animal Resources Center (YARC) in the same room of the vivarium. Yale University is registered as a research facility with the United States Department of Agriculture, License and Registration number 16-R-0001 Registered until March 20, 2023. It also is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) AAALAC Accreditation: April 3, 2019. An Animal Welfare Assurance (#D16-0014) is on file with OLAW-NIH; effective May 1, 2019-May 31, 2023.

Copyright

© 2021, Haugh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,904
    views
  • 229
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelsey A Haugh
  2. Mark S Ladinsky
  3. Irfan Ullah
  4. Helen M Stone
  5. Ruoxi Pi
  6. Alexandre Gilardet
  7. Michael W Grunst
  8. Priti Kumar
  9. Pamela J Bjorkman
  10. Walther Mothes
  11. Pradeep D Uchil
(2021)
In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission
eLife 10:e64179.
https://doi.org/10.7554/eLife.64179

Share this article

https://doi.org/10.7554/eLife.64179

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Gillian AM Tarr, Linda Chui ... Tim A McAllister
    Research Article

    Several areas of the world suffer a notably high incidence of Shiga toxin-producing Escherichia coli. To assess the impact of persistent cross-species transmission systems on the epidemiology of E. coli O157:H7 in Alberta, Canada, we sequenced and assembled E. coli O157:H7 isolates originating from collocated cattle and human populations, 2007–2015. We constructed a timed phylogeny using BEAST2 using a structured coalescent model. We then extended the tree with human isolates through 2019 to assess the long-term disease impact of locally persistent lineages. During 2007–2015, we estimated that 88.5% of human lineages arose from cattle lineages. We identified 11 persistent lineages local to Alberta, which were associated with 38.0% (95% CI 29.3%, 47.3%) of human isolates. During the later period, six locally persistent lineages continued to be associated with human illness, including 74.7% (95% CI 68.3%, 80.3%) of reported cases in 2018 and 2019. Our study identified multiple locally evolving lineages transmitted between cattle and humans persistently associated with E. coli O157:H7 illnesses for up to 13 y. Locally persistent lineages may be a principal cause of the high incidence of E. coli O157:H7 in locations such as Alberta and provide opportunities for focused control efforts.

    1. Microbiology and Infectious Disease
    Vandana Singh, Scot P Ouellette
    Research Article

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.