In vivo reconstitution finds multivalent RNA–RNA interactions as drivers of mesh-like condensates

  1. Weirui Ma  Is a corresponding author
  2. Gang Zhen
  3. Wei Xie
  4. Christine Mayr  Is a corresponding author
  1. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, United States
  2. Structural Biology Program, Memorial Sloan Kettering Cancer Center, United States
7 figures, 2 tables and 1 additional file

Figures

Figure 1 with 2 supplements
RNA determines the morphology of dynamic mesh-like RNA granules in cells.

(A) Confocal live-cell imaging of HeLa cells after the transfection of mCherry-tagged TIS11B. GFP-SEC61B was co-transfected to visualize the endoplasmic reticulum. The white dotted line demarcates …

Figure 1—figure supplement 1
Mutation of the TIS11B RNA-binding domain generates sphere-like granules in cells.

(A) Fluorescence recovery after photobleaching of TIS11B 5 hr after transfection of mGFP-TIS11B into HeLa cells. Scale bar, 1 µm. (B) Shown is the amino acid sequence of the wild-type (WT) TIS11B …

Figure 1—figure supplement 2
In the context of various multivalent domains, the TIS11B RNA-binding domain generates mesh-like condensates in vivo.

(A) Confocal live-cell imaging of HeLa cells after the transfection of mCherry-tagged TIS11B RNA-binding domain (RBD). GFP-SEC61B was co-transfected to visualize the endoplasmic reticulum (ER). The …

Figure 2 with 2 supplements
Specific RNAs induce formation of dynamic mesh-like condensates in vitro.

(A) Representative confocal images of phase separation experiments using purified mGFP-FUS-TIS (10 µM) in the absence or presence of the indicated in vitro transcribed RNAs after 16 hr of …

Figure 2—figure supplement 1
Specific RNAs induce mesh-like condensates in vitro.

(A) Schematic of the FUS-TIS chimeric protein. (B) SDS-PAGE of the purified FUS-TIS protein. FUS-TIS was tagged with His-MBP-mGFP at the N-terminus and with Strep-tag II at the C-terminus and …

Figure 2—figure supplement 2
Specific RNAs induce mesh-like condensates in vitro.

(AD) Representative confocal images of phase separation experiments using purified mGFP-FUS-TIS (10 µM) in the absence or presence of the indicated in vitro transcribed RNAs after 2 hr of …

Figure 3 with 5 supplements
RNAs predicted to have large disordered regions have a high propensity to induce network formation in vitro.

(A) Distribution of length of sphere- and network-forming RNAs. Mann–Whitney test, Z = −2.76, p=0.004. See also Figure 3—source data 1. (B) Number of AU-rich elements in sphere- and network-forming …

Figure 3—source data 1

Length, number of AU-rich elements, GC-content, and normalized ensemble diversity values of the 47 experimentally tested 3′UTRs.

https://cdn.elifesciences.org/articles/64252/elife-64252-fig3-data1-v3.xlsx
Figure 3—figure supplement 1
Specific RNAs with various lengths induce mesh-like condensates in vitro.

Representative confocal images of phase separation experiments using purified mGFP-FUS-TIS (10 µM) in the absence or presence of the indicated in vitro transcribed RNAs after 16 hr of incubation. …

Figure 3—figure supplement 2
RNA alone does not induce phase separation in vitro.

Representative confocal images of phase separation experiments using purified mGFP-FUS-TIS (10 µM) in the absence or presence of the indicated in vitro transcribed RNAs after 16 hr of incubation. …

Figure 3—figure supplement 3
Predicted RNA secondary structures and their corresponding normalized ensemble diversity values for examples of sphere-forming, network-forming, and highly structured RNAs.

(AB) Centroid RNA secondary structure of two sphere-forming 3′UTRs predicted by RNAfold. The color code represents base-pairing probability. See also the URLs in Figure 3—source data 1. (CD) As …

Figure 3—figure supplement 4
The normalized ensemble diversity (NED) value of RNAs is highly predictive for their ability to form sphere- or mesh-like condensates.

(A) Totally 10 out of 11 RNAs with a high NED value were predicted correctly to induce network formation. Representative confocal images of phase separation experiments using purified mGFP-FUS-TIS …

Figure 3—figure supplement 5
In a size-restricted dataset, the number of AU-rich elements does not predict mesh-like condensate formation.

(A) Number of AU-rich elements in RNAs with high normalized ensemble diversity (NED) or low NED values. See also Figure 3—source data 1. Mann–Whitney test, NS, not significant. (B) Nucleotide …

RNAs work additively to induce formation of granule networks in vitro.

(A) RNAs co-localize in mesh-like condensates. Representative confocal images of phase separation experiments using purified mGFP-FUS-TIS (10 µM) in the presence of two different in vitro …

Figure 5 with 1 supplement
A multivalent RNA matrix is responsible for mesh-like condensate formation in vitro.

(A) Schematic of RNAs with strong local secondary structures that are predicted to induce spherical condensates. (B) Schematic of RNAs with large disordered regions that form extensive …

Figure 5—figure supplement 1
Extensive intermolecular RNA–RNA interactions are responsible for formation of mesh-like condensates in vitro.

(A) The TLR8 3′UTR (gray) and the MYC 3′UTR (green) are predicted by RNAfold to dimerize. The secondary structure prediction shows extensive base-pairing between the two RNAs, indicated by the black …

Figure 6 with 1 supplement
Formation of an extensive mRNA network is sufficient for the reconstitution of mesh-like condensates in vivo.

(A) Representative confocal image of in vivo reconstitution of mesh-like condensates using the MS2 system. mCherry-SUMO-SIM fused to the MS2 coat protein was transfected into HeLa cells. Constructs …

Figure 6—source data 1

Transcriptome-wide analysis on normalized ensemble diversity values of 3′UTRs.

https://cdn.elifesciences.org/articles/64252/elife-64252-fig6-data1-v3.xlsx
Figure 6—figure supplement 1
mRNAs with large disordered regions are enriched in AU-rich elements.

(A) The number of AU-rich elements in 3′UTRs correlates with 3′UTR length. The dataset contains all mRNAs expressed in HeLa cells. 3′UTRs without AU-rich elements, N = 2504, 3′UTRs with 1–3 AU-rich …

Figure 7 with 1 supplement
An RNA matrix prevents full fusion of spherical condensates, thus promoting arrangement into filamentous structures in vitro.

(A) Confocal 3D time-lapse imaging of phase separation experiments using purified mGFP-FUS-TIS (10 µM) in the presence of the TLR8 3′UTR (200 nM) after 30 min of incubation. Scale bar, 2 µm. …

Figure 7—figure supplement 1
Extensive intermolecular RNA–RNA interactions are responsible for formation of mesh-like condensates in vitro.

(A) Representative high-resolution confocal images of phase separation experiments using purified mGFP-FUS-TIS (10 µM) in the presence of Cy5-labeled TLR8 3′UTR RNA after 16 hr of incubation. Scale …

Tables

Table 1
Chimeric proteins investigated for mesh-like condensate formation.

RBDmut, RNA-binding domain mutant.

Multivalent domainRNA-binding domainRNADiffusive patternSphere-like condensateMesh-like condensate
TIS11B
HuR
FUS IDR
SUMO-SIM
TIS11B-N/CTIS11B RBDmut
TIS11B-N/CTIS11B
TIS11B-N/CHuR
FUS IDRTIS11B
FUS IDRHuR
SUMO-SIMTIS11B
SUMO-SIMMS2
SUMO-SIMMS2Singlevalent RNA
SUMO-SIMMS2Multivalent RNA
Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Cell line (Homo sapiens)HeLaJonathan S. WeissmanN/AA human cervical cancer cell line (female origin).
Strain, strain background (Escherichia coli)BL21(DE3)NEBC2527HChemically competent E. coli cells.
AntibodyAnti-α-tubulin (mouse monoclonal)Sigma-AldrichCat# T9026, RRID:AB_477593WB (1:5000).
AntibodyAnti-mCherry (mouse monoclonal)AbcamCat# ab125096, RRID:AB_11133266WB (1:5000).
AntibodyAnti-HuR (rabbit polyclonal)MilliporeCat# 07-1735, RRID:AB_1977173
WB (1:2000).
AntibodyIRDye 680RD anti-rabbit IgG secondary antibody (donkey polyclonal)LI-COR BiosciencesCat# 926-68073, RRID:AB_10954442WB (1:10,000).
AntibodyIRDye 800CW anti-mouse IgG secondary antibody
(donkey polyclonal)
LI-COR BiosciencesCat# 926–32212, RRID:AB_621847WB (1:10,000).
Transfected construct (human)pcDNA-SP-GFP-CD47-LUBerkovits and Mayr, 2015N/ASee Materials and methods.
Transfected construct (human)pcDNA-GFP-ELAVL1-LUMa and Mayr, 2018N/ASee Materials and methods.
Transfected construct (human)pcDNA-SP-GFP-CD274-UTRMa and Mayr, 2018N/ASee Materials and methods.
Transfected construct (human)pcDNA-SP-GFP-FUS-UTRMa and Mayr, 2018N/ASee Materials and methods.
Transfected construct (human)pcDNA-GFP-SEC61BMa and Mayr, 2018N/ASee Materials and methods.
Transfected construct (human)pcDNA-mCherry-SEC61BMa and Mayr, 2018N/ASee Materials and methods.
Transfected construct (human)pcDNA-mCherry-TIS11BMa and Mayr, 2018N/ASee Materials and methods.
Transfected construct (human)pcDNA-mCherry-TIS11B CCThis paperN/ASee Materials
and methods.
Transfected construct (human)pcDNA-mCherry-TIS11B FFThis paperN/ASee Materials and methods.
Transfected construct (human)pcDNA-mCherry-TIS11B KKThis paperN/ASee Materials and methods.
Transfected construct (human)pcDNA-mCherry-TIS11B RKThis paperN/ASee Materials and methods.
Transfected construct (human)pcDNA-mCherry-TIS-HuR RBDThis paperN/ASee Materials and methods.
Transfected construct (human)pmCherry-SUMO10-SIM5Liam J. Holt (NYU)N/ASee Materials and methods.
Transfected construct (human)pmCherry-SUMO10-SIM5-TISThis paperN/ASee Materials and methods
Transfected construct (human)pcDNA-mGFP-FUS-TISThis paperN/ASee Materials and methods.
Recombinant DNA reagentpET28aDirk Remus (MSKCC)N/ABacterial expression vector.
Recombinant DNA reagentpDZ2087AddgeneCat# 92414Bacterial expression of TEV protease.
Recombinant DNA reagentpET28a-6xHis-MBP-mGFP-FUS-TIS-Strep-Tag IIThis paperN/ABacterial expression of 6xHis-MBP-mGFP-FUS-TIS-Strep Tag II. See Materials and methods.
Recombinant DNA reagentT7-CD47 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-ELAVL1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-CD274 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-FUS 3′UTRThis paperN/AT7 RNA polymerase- based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-CD44 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-VSIG10 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-IL10 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-TNFSF11 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-GPR39 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-TLR8 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-GPR34 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-TNFAIP6 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-MYC 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-PLA2G4A 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-HEATR5B 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-PPP1R3F 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-DRD1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-FAM72B 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-MCOLN2 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-TSPAN13 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-LHFPL6 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-FAM174A 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-VPS29 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-ADPGK 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See
Materials and methods.
Recombinant DNA reagentT7-ASPN 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-CASP8 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-CLCA2 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-EOMES 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-ESCO1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-GLYATL3 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-HNRNPH3 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-HOGA1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-LPAR4 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-LRBA 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-LYPLAL1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-ODF2 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-PRKDC 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-RHOA 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-SHQ1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-SLC39A6 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-SLC5A9 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-SMIM3 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-SNTN 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-SOSTDC1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-STBD1 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-TP53TG3 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Recombinant DNA reagentT7-TTC17 3′UTRThis paperN/AT7 RNA polymerase-based in vitro transcription. See Materials and methods.
Sequence-based reagentBiotinylated RNA oligo, TNFα ARE-1Ma and Mayr, 2018RNA oligonucleotides5′-CACUUGUGAUUAUUUAUUAUUUAUUUAUUAUUUAUUUAUUUA
−3′
Peptide, recombinant proteinFUS-TISThis paperN/ARecombinant 6xHis-MBP-mGFP-FUS-TIS-Strep Tag II protein purified from bacteria. See Materials and methods.
Peptide, recombinant proteinBovine serum albumin (BSA)New England BiolabCat# B9000S
Commercial assay or kitStreptavidin C1 beadsInvitrogenCat# 65002Streptavidin pulldown assay.
Commercial
assay or kit
QuikChange Lightning Multi Site-Directed Mutagenesis KitAgilent TechnologiesCat# 210513Site-directed mutagenesis.
Commercial
assay or kit
MEGAscript T7 Transcription KitInvitrogenCat# AMB13345In vitro T7 transcription.
Commercial assay or kitQuick Star Bradford Protein Assay KitBio-RadCat# 5000202Bradford assay –protein quantitation.
Chemical compound, drugLipofectamine 2000InvitrogenCat# 11668019
Chemical compound, drugDextran T500PHARMACOSMOSCat# 40030
Chemical compound, drugDesthiobiotinSigma-AldrichCat# D1411-1G
Chemical compound, drugZinc chlorideSigma-AldrichCat# 793523-100G
Chemical compound, drugImidazoleSigma-AldrichCat# I2399-100G
Chemical compound, drugIPTGGold BiotechnologyCat# I2481-EZ10
Chemical compound, drugPMSFSigma-AldrichCat# 11359061001
Chemical compound, drugDTTSigma-AldrichCat# 10708984001
Software, algorithmFIJINIHhttps://fiji.sc/
Software, algorithmZENZEISShttps://www.zeiss.com/microscopy/int/downloads/zen.html
Software, algorithmGraphPad Prism 7GraphPad Softwarehttps://www.graphpad.com/scientific-software/prism
Software, algorithmOdysseyLI-COR Bioscienceshttps://www.licor.com/bio/products/imaging_systems/odyssey/
OtherNi-NTA AgaroseQiagenCat# 30230His tag purification.
OtherStrepTrap columnGE HealthcareCat# 28907547Strep tag II purification.
OtherAmicon Ultra-centrifugal filters-50KEMD MilliporeCat# UFC905024Concentrating protein samples.
Other384-well glass-bottom microplateGreiner Bio-OneCat# M4437-16EAGlass-bottom microplate for confocal imaging.

Additional files

Download links