In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates

  1. Weirui Ma  Is a corresponding author
  2. Gang Zheng
  3. Wei Xie
  4. Christine Mayr  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States

Abstract

Liquid-like condensates have been thought to be sphere-like. Recently, various condensates with filamentous morphology have been observed in cells. One such condensate is the TIS granule network that shares a large surface area with the rough endoplasmic reticulum and is important for membrane protein trafficking. It has been unclear how condensates with mesh-like shapes, but dynamic protein components are formed. In vitro and in vivo reconstitution experiments revealed that the minimal components are a multivalent RNA-binding protein that concentrates RNAs that are able to form extensive intermolecular mRNA-mRNA interactions. mRNAs with large unstructured regions have a high propensity to form a pervasive intermolecular interaction network that acts as condensate skeleton. The underlying RNA matrix prevents full fusion of spherical liquid-like condensates, thus driving the formation of irregularly shaped membraneless organelles. The resulting large surface area may promote interactions at the condensate surface and at the interface with other organelles.

Data availability

All raw data are included as supplementary Excel files in the manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Weirui Ma

    Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    maweirui@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  2. Gang Zheng

    Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Xie

    Structural Biology, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christine Mayr

    Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    mayrc@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7084-7608

Funding

NIH Office of the Director (DP1-GM123454)

  • Christine Mayr

National Cancer Institute (P30 CA008748)

  • Christine Mayr

Pershing Square Sohn Cancer Research Alliance

  • Christine Mayr

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,333
    views
  • 1,036
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weirui Ma
  2. Gang Zheng
  3. Wei Xie
  4. Christine Mayr
(2021)
In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates
eLife 10:e64252.
https://doi.org/10.7554/eLife.64252

Share this article

https://doi.org/10.7554/eLife.64252

Further reading

    1. Cell Biology
    Fabian Link, Sisco Jung ... Brooke Morriswood
    Research Article

    The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.

    1. Cell Biology
    Georgia Maria Sagia, Xenia Georgiou ... Sofia Dimou
    Research Article Updated

    Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.