A putative structural mechanism underlying the antithetic effect of homologous RND1 and RhoD GTPases in mammalian plexin regulation

  1. Yanyan Liu
  2. Pu Ke
  3. Yi-Chun Kuo
  4. Yuxiao Wang
  5. Xuewu Zhang  Is a corresponding author
  6. Chen Song  Is a corresponding author
  7. Yibing Shan  Is a corresponding author
  1. Peking University, China
  2. Beijing Computational Science Research Center, China
  3. University of Texas Southwest Medical Center, United States
  4. University of Texas Southwestern Medical Center, United States
  5. Antidote Health Foundation, United States

Abstract

Plexins are semaphorin receptors that play essential roles in mammalian neuronal axon guidance and in many other important mammalian biological processes. Plexin signaling depends on a semaphorin-induced dimerization mechanism, and is modulated by small GTPases of the Rho family, of which RND1 serves as a plexin activator yet its close homolog RhoD an inhibitor. Using molecular dynamics (MD) simulations we showed that RND1 reinforces the plexin dimerization interface whereas RhoD destabilizes it due to their differential interaction with the cell membrane. Upon binding plexin at the Rho-GTPase binding domain (RBD), RND1 and RhoD interact differently with the inner leaflet of the cell membrane, and exert opposite effects on the dimerization interface via an allosteric network involving the RBD, RBD linkers, and a buttress segment adjacent to the dimerization interface. The differential membrane interaction is attributed to the fact that, unlike RND1, RhoD features a short C-terminal tail and a positively charged membrane interface.

Data availability

Diffraction data have been deposited in PDB under the accession code 7KDC.Simulation data have been deposited in ZONODO database.

The following data sets were generated

Article and author information

Author details

  1. Yanyan Liu

    Center for Quantitative Biology, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Pu Ke

    Complex System, Beijing Computational Science Research Center, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi-Chun Kuo

    University of Texas Southwest Medical Center, Dallas, TX, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuxiao Wang

    University of Texas Southwest Medical Center, Dallas, TX, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xuewu Zhang

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    xuewu.zhang@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3634-6711
  6. Chen Song

    Center for Quantitative Biology, Peking University, Beijing, China
    For correspondence
    c.song@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9730-3216
  7. Yibing Shan

    Chemistry, Antidote Health Foundation, Morristown, United States
    For correspondence
    ybshan@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3865-8110

Funding

National Natural Science Foundation of China (21806004)

  • Yanyan Liu

NSAF Joint Fund (U1430237)

  • Yanyan Liu

National Institutes of Health (R35GM130289)

  • Xuewu Zhang

Welch Foundation (I-1702)

  • Chen Song

National Natural Science Foundation of China (21873006)

  • Chen Song

National Natural Science Foundation of China (32071251)

  • Chen Song

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Aaron Frank, University of Michigan, United States

Version history

  1. Received: October 24, 2020
  2. Accepted: June 10, 2021
  3. Accepted Manuscript published: June 11, 2021 (version 1)
  4. Version of Record published: June 22, 2021 (version 2)

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 940
    views
  • 155
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yanyan Liu
  2. Pu Ke
  3. Yi-Chun Kuo
  4. Yuxiao Wang
  5. Xuewu Zhang
  6. Chen Song
  7. Yibing Shan
(2021)
A putative structural mechanism underlying the antithetic effect of homologous RND1 and RhoD GTPases in mammalian plexin regulation
eLife 10:e64304.
https://doi.org/10.7554/eLife.64304

Share this article

https://doi.org/10.7554/eLife.64304

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Shun Kai Yang, Shintaroh Kubo ... Khanh Huy Bui
    Research Article

    Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.