Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy

  1. Daniel R Knight  Is a corresponding author
  2. Korakrit Imwattana
  3. Brian Kullin
  4. Enzo Guerrero-Araya
  5. Daniel Paredes-Sabja
  6. Xavier Didelot
  7. Kate E Dingle
  8. David W Eyre
  9. César Rodríguez
  10. Thomas V Riley  Is a corresponding author
  1. Murdoch University, Australia
  2. University of Western Australia, Australia
  3. University of Cape Town, South Africa
  4. Universidad Andrés Bello, Chile
  5. Universidad Andrés Bello, United Kingdom
  6. University of Warwick, United Kingdom
  7. University of Oxford, United Kingdom
  8. Universidad de Costa Rica, Costa Rica

Abstract

Clostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, and pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI-III. The emergence of these three novel genomospecies predates clades C1-5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work may impact the diagnosis of CDI.

Data availability

All data generated or analysed during this study are included in the manuscript and Supplementary Data which is hosted at Figshare http://doi.org/10.6084/m9.figshare.12471461.Data files on figshare include:[1] Full MLST data for all 12000+ C. difficile genomes (Fig 1).[2] Whole-genome ANI analyses (Table 1, Fig 3, Fig 5).[3] Tree files for phylogenetic analyses (Fig 2, Fig 4).[4] Pangenome data (Fig 6).[5] Pan-GWAS data (Table 2).[6] Comparative genomic analysis of virulence gene architecture (Fig 7).Note: Regarding the question below - Did your work use any previously published datasets (e.g., DNA sequence data, clinical trial data, field data)?We retrieved the entire collection of C. difficile genomes (taxid ID 1496) held at the NCBI Sequence Read Archive [https://www.ncbi.nlm.nih.gov/sra/]. The raw dataset (as of 1st January 2020) comprised 12,621 genomes. These genomes comprise hundreds, maybe thousands of publications. The individual accession numbers for all genomes analysed in this study are provided in the Supplementary Data at http://doi.org/10.6084/m9.figshare.12471461.

Article and author information

Author details

  1. Daniel R Knight

    Murdoch University, Murdoch, Australia
    For correspondence
    daniel.knight@murdoch.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9480-4733
  2. Korakrit Imwattana

    School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2538-9775
  3. Brian Kullin

    Department of Pathology, University of Cape Town, Cape Town, South Africa
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5460-1977
  4. Enzo Guerrero-Araya

    Microbiota-Host Interactions and Clostridia Research Group, Universidad Andrés Bello, Santiago, Chile
    Competing interests
    No competing interests declared.
  5. Daniel Paredes-Sabja

    Microbiota-Host Interactions and Clostridia Research Group, Universidad Andrés Bello, Santiago, United Kingdom
    Competing interests
    No competing interests declared.
  6. Xavier Didelot

    University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1885-500X
  7. Kate E Dingle

    Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. David W Eyre

    Big Data Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    David W Eyre, DWE declares lecture fees from Gilead, outside the submitted work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5095-6367
  9. César Rodríguez

    Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5599-0652
  10. Thomas V Riley

    School of Biomedical Sciences, University of Western Australia, Nedlands, Australia
    For correspondence
    thomas.riley@uwa.edu.au
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1351-3740

Funding

Raine Medical Research Foundation

  • Daniel R Knight

National Health and Medical Research Council

  • Daniel R Knight

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Knight et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,543
    views
  • 452
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel R Knight
  2. Korakrit Imwattana
  3. Brian Kullin
  4. Enzo Guerrero-Araya
  5. Daniel Paredes-Sabja
  6. Xavier Didelot
  7. Kate E Dingle
  8. David W Eyre
  9. César Rodríguez
  10. Thomas V Riley
(2021)
Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy
eLife 10:e64325.
https://doi.org/10.7554/eLife.64325

Share this article

https://doi.org/10.7554/eLife.64325

Further reading

    1. Genetics and Genomics
    Yi Li, Long Gong ... Shangbang Gao
    Research Article

    Resistance to anthelmintics, particularly the macrocyclic lactone ivermectin (IVM), presents a substantial global challenge for parasite control. We found that the functional loss of an evolutionarily conserved E3 ubiquitin ligase, UBR-1, leads to IVM resistance in Caenorhabditis elegans. Multiple IVM-inhibiting activities, including viability, body size, pharyngeal pumping, and locomotion, were significantly ameliorated in various ubr-1 mutants. Interestingly, exogenous application of glutamate induces IVM resistance in wild-type animals. The sensitivity of all IVM-affected phenotypes of ubr-1 is restored by eliminating proteins associated with glutamate metabolism or signaling: GOT-1, a transaminase that converts aspartate to glutamate, and EAT-4, a vesicular glutamate transporter. We demonstrated that IVM-targeted GluCls (glutamate-gated chloride channels) are downregulated and that the IVM-mediated inhibition of serotonin-activated pharynx Ca2+ activity is diminished in ubr-1. Additionally, enhancing glutamate uptake in ubr-1 mutants through ceftriaxone completely restored their IVM sensitivity. Therefore, UBR-1 deficiency-mediated aberrant glutamate signaling leads to ivermectin resistance in C. elegans.

    1. Genetics and Genomics
    Minsoo Noh, Xiangguo Che ... Sihoon Lee
    Research Article

    Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1–84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1–34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1–34) induced acute calcemic and phosphaturic responses comparable to PTH(1–34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1–34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.