1. Neuroscience
Download icon

Sleeping at the Switch

Research Article
  • Cited 0
  • Views 952
  • Annotations
Cite this article as: eLife 2021;10:e64337 doi: 10.7554/eLife.64337

Abstract

Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation and their changes during aging. Here, we address the possibility that two types of slow waves co-exist in humans. Thirty young and 29 older adults underwent a night of polysomnographic recordings. Using the Transition frequency, slow waves with a slow transition (slow switchers) and with a fast transition (fast switchers) were discovered. Slow switchers had a high EEG connectivity along their depolarization transition while fast switchers had a lower connectivity dynamic and dissipated faster during the night. Aging was associated with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the connectivity network of older individuals. Our findings show that two different types of slow waves with possible distinct underlying functions, coexist in the slow wave spectrum.

Data availability

All codes and transformed data used for all the analyses and most specifically to produce all of the figures of the paper can be freely accessible using this link : https://github.com/jmlina/Slow_Wave_Switchers. As requested, the full software licensing will be provided during the review process. We will follow the guidelines you have mentioned as soon as people in charge will be back. All the process will be done for the final version.This information and link was also added in a new section at the end of the paper under "Additional data files".Dataset can not be shared as participants did not give consent for data sharing.For the raw data, a request needs to be formulated to the ethic committee of the Hôpital de Sacré-Coeur de Montréal, as raw data of human participants cannot be made public under Québec's law.The data provided will be anonymized and some will be processed. Researchers who request access to the data will need to provide their research protocol and their IRB approval for this protocol. The documents will be studied by the owner of the database (Julie Carrier) who will then also submit to her institution's REB for authorization to share the data. Data requests should be addressed to:Julie Carrier (PI): julie.carrier.1@umontreal.caSonia Frenette (in cc) : sonia.frenette@umontreal.ca

Article and author information

Author details

  1. Maude Bouchard

    psychology, Université de Montréal, Montreal, Canada
    For correspondence
    maude.bouchard.1@umontreal.ca
    Competing interests
    The authors declare that no competing interests exist.
  2. Jean-Marc Lina

    Mathematics, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre-Olivier Gaudreault

    Psychology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandre Lafrenière

    Psychology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan Dubé

    Psychology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nadia Gosselin

    Psychology, Université de Montréal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Julie Carrier

    Psychology, Université de Montréal, Montreal, Canada
    For correspondence
    julie.carrier.1@umontreal.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9863-4436

Funding

Canadian Institutes of Health Research (Vanier scholarship)

  • Maude Bouchard

Canadian Institutes of Health Research (190750)

  • Julie Carrier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The protocol was approved by the ethics committee of the Hôpital du Sacré-Coeur de Montréal and performed in accordance with the relevant guidelines and regulations. Participants provided informed consent and received financial compensation for their participation. (CMER-RNQ 08-136 08-002).

Reviewing Editor

  1. Bryce A Mander, University of California, Irvine, United States

Publication history

  1. Received: October 26, 2020
  2. Preprint posted: February 3, 2021 (view preprint)
  3. Accepted: August 26, 2021
  4. Accepted Manuscript published: August 27, 2021 (version 1)
  5. Version of Record published: September 20, 2021 (version 2)

Copyright

© 2021, Bouchard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 952
    Page views
  • 123
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article Updated

    Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.

    1. Neuroscience
    Renée S Koolschijn et al.
    Research Article Updated

    The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism.