Sleeping at the Switch
Abstract
Sleep slow waves are studied for their role in brain plasticity, homeostatic regulation and their changes during aging. Here, we address the possibility that two types of slow waves co-exist in humans. Thirty young and 29 older adults underwent a night of polysomnographic recordings. Using the Transition frequency, slow waves with a slow transition (slow switchers) and with a fast transition (fast switchers) were discovered. Slow switchers had a high EEG connectivity along their depolarization transition while fast switchers had a lower connectivity dynamic and dissipated faster during the night. Aging was associated with lower temporal dissipation of sleep pressure in slow and fast switchers and lower EEG connectivity at the microscale of the oscillations, suggesting a decreased flexibility in the connectivity network of older individuals. Our findings show that two different types of slow waves with possible distinct underlying functions, coexist in the slow wave spectrum.
Data availability
All codes and transformed data used for all the analyses and most specifically to produce all of the figures of the paper can be freely accessible using this link : https://github.com/jmlina/Slow_Wave_Switchers. As requested, the full software licensing will be provided during the review process. We will follow the guidelines you have mentioned as soon as people in charge will be back. All the process will be done for the final version.This information and link was also added in a new section at the end of the paper under "Additional data files".Dataset can not be shared as participants did not give consent for data sharing.For the raw data, a request needs to be formulated to the ethic committee of the Hôpital de Sacré-Coeur de Montréal, as raw data of human participants cannot be made public under Québec's law.The data provided will be anonymized and some will be processed. Researchers who request access to the data will need to provide their research protocol and their IRB approval for this protocol. The documents will be studied by the owner of the database (Julie Carrier) who will then also submit to her institution's REB for authorization to share the data. Data requests should be addressed to:Julie Carrier (PI): julie.carrier.1@umontreal.caSonia Frenette (in cc) : sonia.frenette@umontreal.ca
Article and author information
Author details
Funding
Canadian Institutes of Health Research (Vanier scholarship)
- Maude Bouchard
Canadian Institutes of Health Research (190750)
- Julie Carrier
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The protocol was approved by the ethics committee of the Hôpital du Sacré-Coeur de Montréal and performed in accordance with the relevant guidelines and regulations. Participants provided informed consent and received financial compensation for their participation. (CMER-RNQ 08-136 08-002).
Copyright
© 2021, Bouchard et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.
-
- Neuroscience
Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.