Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth

  1. Robert A Sommer
  2. Jerry T DeWitt
  3. Raymond Tan
  4. Douglas R Kellogg  Is a corresponding author
  1. University of California, Santa Cruz, United States

Abstract

Entry into the cell cycle occurs only when sufficient growth has occurred. In budding yeast, the cyclin Cln3 is thought to initiate cell cycle entry by inactivating a transcriptional repressor called Whi5. Growth-dependent changes in the concentrations of Cln3 or Whi5 have been proposed to link cell cycle entry to cell growth. However, there are conflicting reports regarding the behavior and roles of Cln3 and Whi5. Here, we found no evidence that changes in the concentration of Whi5 play a major role in controlling cell cycle entry. Rather, the data suggest that cell growth triggers cell cycle entry by driving an increase in the concentration of Cln3. We further found that accumulation of Cln3 is dependent upon homologs of mammalian SGK kinases that control cell growth and size. Together, the data are consistent with models in which Cln3 is a crucial link between cell growth and the cell cycle.

Data availability

Figures present data from biological replicates that are representative of multiple biological replicates. Coulter counter data show the average of multiple biological replicates.

Article and author information

Author details

  1. Robert A Sommer

    Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jerry T DeWitt

    Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9077-643X
  3. Raymond Tan

    Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas R Kellogg

    Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, United States
    For correspondence
    dkellogg@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5050-2194

Funding

National Institutes of Health (GM053959)

  • Douglas R Kellogg

National Institutes of Health (GM131826)

  • Douglas R Kellogg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Publication history

  1. Preprint posted: October 1, 2020 (view preprint)
  2. Received: October 27, 2020
  3. Accepted: October 29, 2021
  4. Accepted Manuscript published: October 29, 2021 (version 1)
  5. Accepted Manuscript updated: November 1, 2021 (version 2)
  6. Version of Record published: November 15, 2021 (version 3)

Copyright

© 2021, Sommer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 612
    Page views
  • 155
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert A Sommer
  2. Jerry T DeWitt
  3. Raymond Tan
  4. Douglas R Kellogg
(2021)
Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth
eLife 10:e64364.
https://doi.org/10.7554/eLife.64364

Further reading

    1. Cell Biology
    2. Developmental Biology
    Anna Keppner et al.
    Research Article Updated

    Spermatogenesis is a highly specialized differentiation process driven by a dynamic gene expression program and ending with the production of mature spermatozoa. Whereas hundreds of genes are known to be essential for male germline proliferation and differentiation, the contribution of several genes remains uncharacterized. The predominant expression of the latest globin family member, androglobin (Adgb), in mammalian testis tissue prompted us to assess its physiological function in spermatogenesis. Adgb knockout mice display male infertility, reduced testis weight, impaired maturation of elongating spermatids, abnormal sperm shape, and ultrastructural defects in microtubule and mitochondrial organization. Epididymal sperm from Adgb knockout animals display multiple flagellar malformations including coiled, bifid or shortened flagella, and erratic acrosomal development. Following immunoprecipitation and mass spectrometry, we could identify septin 10 (Sept10) as interactor of Adgb. The Sept10-Adgb interaction was confirmed both in vivo using testis lysates and in vitro by reciprocal co-immunoprecipitation experiments. Furthermore, the absence of Adgb leads to mislocalization of Sept10 in sperm, indicating defective manchette and sperm annulus formation. Finally, in vitro data suggest that Adgb contributes to Sept10 proteolysis in a calmodulin-dependent manner. Collectively, our results provide evidence that Adgb is essential for murine spermatogenesis and further suggest that Adgb is required for sperm head shaping via the manchette and proper flagellum formation.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Morgan L Pimm et al.
    Research Article Updated

    Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to phosphoinositide lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and bound tubulin dimers (kD = 1.89 µM) to impact microtubule dynamics. In PFN1-deficient mammalian cells, Halo-PFN1 or mApple-PFN1 (mAp-PEN1) restored morphological and cytoskeletal functions. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.