Disparate bone anabolic cues activate bone formation by regulating the rapid lysosomal degradation of sclerostin protein

Abstract

The down regulation of sclerostin in osteocytes mediates bone formation in response to mechanical cues and parathyroid hormone (PTH). To date, the regulation of sclerostin has been attributed exclusively to the transcriptional downregulation of the Sost gene hours after stimulation. Using mouse models and rodent cell lines, we describe the rapid, minutes-scale post-translational degradation of sclerostin protein by the lysosome following mechanical load and PTH. We present a model, integrating both new and established mechanically- and hormonally-activated effectors into the regulated degradation of sclerostin by lysosomes. Using a mouse forelimb mechanical loading model, we find transient inhibition of lysosomal degradation or the upstream mechano-signaling pathway controlling sclerostin abundance impairs subsequent load-induced bone formation by preventing sclerostin degradation. We also link dysfunctional lysosomes to aberrant sclerostin regulation using human Gaucher disease iPSCs. These results reveal how bone anabolic cues post-translationally regulate sclerostin abundance in osteocytes to regulate bone formation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nicole R Gould

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    For correspondence
    ngould@som.umaryland.edu
    Competing interests
    No competing interests declared.
  2. Katrina M Williams

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3729-0630
  3. Humberto C Joca

    Center for Biomedical Engineering & Technology, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Olivia M Torre

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3405-6259
  5. James S Lyons

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    James S Lyons, Holds two patents related to this work. One for the custom fluid shear device used for these experiments (US Patent No US 2017/0276666 A1) and a second for the targeting microtubules (part of this mechano-transduction pathway) to improve bone mass (US Patent No US 2019/0351055 A1)..
  6. Jenna M Leser

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Manasa P Srikanth

    Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Marcus Hughes

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Ramzi J Khairallah

    N/A, Myologica, LLC, New Market, United States
    Competing interests
    Ramzi J Khairallah, Has a patent pending on colchicine analogs to treat musculoskeletal disorders (PCT/US2018/038300).Ramzi J. Khairallah is affiliated with Myologica, LLC. The author has no financial interests to declare..
  10. Ricardo A Feldman Dr.

    Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Christopher W Ward

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    For correspondence
    ward@som.umaryland.edu
    Competing interests
    Christopher W Ward, Holds two patents related to this work. One for the custom fluid shear device used for these experiments (US Patent No US 2017/0276666 A1) and a second for the targeting microtubules (part of this mechano-transduction pathway) to improve bone mass (US Patent No US 2019/0351055 A1). Another patent pending on colchicine analogs to treat musculoskeletal disorders (PCT/US2018/038300)..
  12. Joseph P Stains

    Orthopaedics, University of Maryland, School of Medicine, Baltimore, United States
    For correspondence
    jstains@som.umaryland.edu
    Competing interests
    Joseph P Stains, Holds two patents related to this work. One for the custom fluid shear device used for these experiments (US Patent No US 2017/0276666 A1) and a second for the targeting microtubules (part of this mechano-transduction pathway) to improve bone mass (US Patent No US 2019/0351055 A1)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1610-4694

Funding

National Institutes of Health (AR071614)

  • Christopher W Ward
  • Joseph P Stains

Maryland Stem Cell Research Fund (2018-MSCRFD-4246)

  • Ricardo A Feldman Dr.

American Heart Association (19POST34450156)

  • Humberto C Joca

National Institutes of Health (AR071618,HL142290)

  • Christopher W Ward

National Institutes of Health (GM008181)

  • Nicole R Gould
  • James S Lyons

National Institutes of Health (AR007592)

  • Katrina M Williams

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to protocol approved by the Animal care and Use Committee at the University of Maryland School of Medicine (Protocol Numbers, 0617013 and 0520007).

Copyright

© 2021, Gould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,435
    views
  • 342
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole R Gould
  2. Katrina M Williams
  3. Humberto C Joca
  4. Olivia M Torre
  5. James S Lyons
  6. Jenna M Leser
  7. Manasa P Srikanth
  8. Marcus Hughes
  9. Ramzi J Khairallah
  10. Ricardo A Feldman Dr.
  11. Christopher W Ward
  12. Joseph P Stains
(2021)
Disparate bone anabolic cues activate bone formation by regulating the rapid lysosomal degradation of sclerostin protein
eLife 10:e64393.
https://doi.org/10.7554/eLife.64393

Share this article

https://doi.org/10.7554/eLife.64393

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.