Preserved sensory processing but hampered conflict detection when stimulus input is task-irrelevant

Abstract

Conflict detection in sensory input is central to adaptive human behavior. Perhaps unsurprisingly, past research has shown that conflict may even be detected in absence of conflict awareness, suggesting that conflict detection is an automatic process that does not require attention. To test the possibility of conflict processing in the absence of attention, we manipulated task relevance and response overlap of potentially conflicting stimulus features across six behavioral tasks. Multivariate analyses on human electroencephalographic data revealed neural signatures of conflict only when at least one feature of a conflicting stimulus was attended, regardless of whether that feature was part of the conflict, or overlaps with the response. In contrast, neural signatures of basic sensory processes were present even when a stimulus was completely unattended. These data reveal an attentional bottleneck at the level of objects, suggesting that object-based attention is a prerequisite for cognitive control operations involved in conflict detection.

Data availability

The data and analysis scripts used in this article is available on Figshare https://uvaauas.figshare.com/projects/Preserved_sensory_processing_but_hampered_conflict_detection_when_stimulus_input_is_task-irrelevant/115020

The following data sets were generated

Article and author information

Author details

  1. Stijn Adriaan Nuiten

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    stijnnuiten@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9248-166X
  2. Andres Canales-Johnson

    Department of Psychology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Lola Beerendonk

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Nutsa Nanuashvili

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Johannes Jacobus Fahrenfort

    Department of Experimental and Applied Psychology, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9025-3436
  6. Tristan Bekinschtein

    Department of Psychology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Simon van Gaal

    Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    simonvangaal@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (ERC-2016-STG_715605)

  • Simon van Gaal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Written informed consent was obtained from all participants after explanation of the experimental protocol. This study was approved by the local ethics committee of the University of Amsterdam (projects: 2015-BC-4687, 2017-BC-8257, 2019-BC-10711).

Copyright

© 2021, Nuiten et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,386
    views
  • 175
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stijn Adriaan Nuiten
  2. Andres Canales-Johnson
  3. Lola Beerendonk
  4. Nutsa Nanuashvili
  5. Johannes Jacobus Fahrenfort
  6. Tristan Bekinschtein
  7. Simon van Gaal
(2021)
Preserved sensory processing but hampered conflict detection when stimulus input is task-irrelevant
eLife 10:e64431.
https://doi.org/10.7554/eLife.64431

Share this article

https://doi.org/10.7554/eLife.64431

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.