The causal role of auditory cortex in auditory working memory

Abstract

Working memory (WM), the ability to actively hold information in memory over a delay period of seconds, is a fundamental constituent of cognition. Delay-period activity in sensory cortices has been observed in WM tasks, but whether and when the activity plays a functional role for memory maintenance remains unclear. Here we investigated the causal role of auditory cortex (AC) for memory maintenance in mice performing an auditory WM task. Electrophysiological recordings revealed that AC neurons were active not only during the presentation of the auditory stimulus but also early in the delay period. Furthermore, optogenetic suppression of neural activity in AC during the stimulus epoch and early delay period impaired WM performance, whereas suppression later in the delay period did not. Thus, AC is essential for information encoding and maintenance in auditory WM task, especially during the early delay period.

Data availability

Data deposited in Dryad Digital Repository, accessible here: doi:10.5061/dryad.8gtht76nf. Reviewer Link: https://datadryad.org/stash/share/izZSpsIhujfbQbO8rAcXZ54ZBhyev1JIV1RHfpIaV3U

Article and author information

Author details

  1. Liping Yu

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiawei Hu

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chenlin Shi

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Zhou

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Maozhi Tian

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiping Zhang

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jinghong Xu

    School of Life Science, East China Normal University, Shanghai, China
    For correspondence
    jhxu@bio.ecnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2864-4196

Funding

Shanghai Natural Science Foundation (20ZR1417800)

  • Jinghong Xu

National Natural Science Foundation of China (31970925)

  • Liping Yu

Shanghai Natural Science Foundation (19ZR1416500)

  • Liping Yu

National Natural Science Foundation of China (31400944)

  • Jinghong Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the US National Institutes of Health. The protocol was approved by the Animal Care and Use Committee of East China Normal University, Shanghai, China (m20160302).

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,238
    views
  • 418
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Liping Yu
  2. Jiawei Hu
  3. Chenlin Shi
  4. Li Zhou
  5. Maozhi Tian
  6. Jiping Zhang
  7. Jinghong Xu
(2021)
The causal role of auditory cortex in auditory working memory
eLife 10:e64457.
https://doi.org/10.7554/eLife.64457

Share this article

https://doi.org/10.7554/eLife.64457

Further reading

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.