1. Neuroscience
Download icon

The causal role of auditory cortex in auditory working memory

  1. Liping Yu
  2. Jiawei Hu
  3. Chenlin Shi
  4. Li Zhou
  5. Maozhi Tian
  6. Jiping Zhang
  7. Jinghong Xu  Is a corresponding author
  1. East China Normal University, China
Research Article
  • Cited 0
  • Views 351
  • Annotations
Cite this article as: eLife 2021;10:e64457 doi: 10.7554/eLife.64457
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Working memory (WM), the ability to actively hold information in memory over a delay period of seconds, is a fundamental constituent of cognition. Delay-period activity in sensory cortices has been observed in WM tasks, but whether and when the activity plays a functional role for memory maintenance remains unclear. Here we investigated the causal role of auditory cortex (AC) for memory maintenance in mice performing an auditory WM task. Electrophysiological recordings revealed that AC neurons were active not only during the presentation of the auditory stimulus but also early in the delay period. Furthermore, optogenetic suppression of neural activity in AC during the stimulus epoch and early delay period impaired WM performance, whereas suppression later in the delay period did not. Thus, AC is essential for information encoding and maintenance in auditory WM task, especially during the early delay period.

Data availability

Data deposited in Dryad Digital Repository, accessible here: doi:10.5061/dryad.8gtht76nf. Reviewer Link: https://datadryad.org/stash/share/izZSpsIhujfbQbO8rAcXZ54ZBhyev1JIV1RHfpIaV3U

Article and author information

Author details

  1. Liping Yu

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jiawei Hu

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chenlin Shi

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Zhou

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Maozhi Tian

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiping Zhang

    School of Life Science, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jinghong Xu

    School of Life Science, East China Normal University, Shanghai, China
    For correspondence
    jhxu@bio.ecnu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2864-4196

Funding

Shanghai Natural Science Foundation (20ZR1417800)

  • Jinghong Xu

National Natural Science Foundation of China (31970925)

  • Liping Yu

Shanghai Natural Science Foundation (19ZR1416500)

  • Liping Yu

National Natural Science Foundation of China (31400944)

  • Jinghong Xu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the US National Institutes of Health. The protocol was approved by the Animal Care and Use Committee of East China Normal University, Shanghai, China (m20160302).

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Publication history

  1. Received: October 29, 2020
  2. Accepted: April 28, 2021
  3. Accepted Manuscript published: April 29, 2021 (version 1)

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 351
    Page views
  • 70
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Eun Ju Shin et al.
    Research Article Updated

    Studies in rats, monkeys, and humans have found action-value signals in multiple regions of the brain. These findings suggest that action-value signals encoded in these brain structures bias choices toward higher expected rewards. However, previous estimates of action-value signals might have been inflated by serial correlations in neural activity and also by activity related to other decision variables. Here, we applied several statistical tests based on permutation and surrogate data to analyze neural activity recorded from the striatum, frontal cortex, and hippocampus. The results show that previously identified action-value signals in these brain areas cannot be entirely accounted for by concurrent serial correlations in neural activity and action value. We also found that neural activity related to action value is intermixed with signals related to other decision variables. Our findings provide strong evidence for broadly distributed neural signals related to action value throughout the brain.

    1. Neuroscience
    Gonçalo Lopes et al.
    Research Article Updated

    Real-time rendering of closed-loop visual environments is important for next-generation understanding of brain function and behaviour, but is often prohibitively difficult for non-experts to implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-use open-source software for the display of virtual or augmented reality, as well as standard visual stimuli. BonVision has been tested on humans and mice, and is capable of supporting new experimental designs in other animal models of vision. As the architecture is based on the open-source Bonsai graphical programming language, BonVision benefits from native integration with experimental hardware. BonVision therefore enables easy implementation of closed-loop experiments, including real-time interaction with deep neural networks, and communication with behavioural and physiological measurement and manipulation devices.