Innervation modulates the functional connectivity between pancreatic endocrine cells

  1. Yu Hsuan Carol Yang  Is a corresponding author
  2. Linford JB Briant
  3. Christopher A Raab
  4. Sri Teja Mullapudi
  5. Hans-Martin Maischein
  6. Koichi Kawakami
  7. Didier YR Stainier  Is a corresponding author
  1. Max Planck Institute for Heart and Lung Research, Germany
  2. University of Oxford, United Kingdom
  3. National Institute of Genetics, Japan

Abstract

The importance of pancreatic endocrine cell activity modulation by autonomic innervation has been debated. To investigate this question, we established an in vivo imaging model that also allows chronic and acute neuromodulation with genetic and optogenetic tools. Using the GCaMP6s biosensor together with endocrine cell fluorescent reporters, we imaged calcium dynamics simultaneously in multiple pancreatic islet cell types in live animals in control states and upon changes in innervation. We find that by 4 days post fertilization in zebrafish, a stage when islet architecture is reminiscent of that in adult rodents, prominent activity coupling between beta cells is present in basal glucose conditions. Furthermore, we show that both chronic and acute loss of nerve activity result in diminished beta-beta and alpha-beta activity coupling. Pancreatic nerves are in contact with all islet cell types, but predominantly with beta and delta cells. Surprisingly, a subset of delta cells with detectable peri-islet neural activity coupling had significantly higher homotypic coupling with other delta cells suggesting that some delta cells receive innervation that coordinates their output. Overall, these data show that innervation plays a vital role in the maintenance of homotypic and heterotypic cellular connectivity in pancreatic islets, a process critical for islet function.

Data availability

All data generated or analysed during this study are included in the manuscript, figures, and figure legends. Source data files have been provided for Figures 1, 2, 3, and 5.

Article and author information

Author details

  1. Yu Hsuan Carol Yang

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Carol.Yang@mpi-bn.mpg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6663-0302
  2. Linford JB Briant

    Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3619-3177
  3. Christopher A Raab

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  4. Sri Teja Mullapudi

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3916-8148
  5. Hans-Martin Maischein

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    No competing interests declared.
  6. Koichi Kawakami

    Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
    Competing interests
    Koichi Kawakami, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9993-1435
  7. Didier YR Stainier

    Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    Didier.Stainier@mpi-bn.mpg.de
    Competing interests
    Didier YR Stainier, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0382-0026

Funding

Max Planck Society

  • Didier YR Stainier

Canadian Institutes of Health Research

  • Yu Hsuan Carol Yang

Human Frontier Science Program (LT000159/2015)

  • Yu Hsuan Carol Yang

EMBO (ALTF 773-2014)

  • Yu Hsuan Carol Yang

NIG-JOINT

  • Yu Hsuan Carol Yang

AMED

  • Koichi Kawakami

Wellcome Trust

  • Linford JB Briant

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All zebrafish husbandry was performed under standard conditions in accordance with institutional (MPG) and national ethical and animal welfare guidelines (Proposal numbers: B2/1041, B2/Anz. 1007, B2/1218). All procedures conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,202
    views
  • 325
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yu Hsuan Carol Yang
  2. Linford JB Briant
  3. Christopher A Raab
  4. Sri Teja Mullapudi
  5. Hans-Martin Maischein
  6. Koichi Kawakami
  7. Didier YR Stainier
(2022)
Innervation modulates the functional connectivity between pancreatic endocrine cells
eLife 11:e64526.
https://doi.org/10.7554/eLife.64526

Share this article

https://doi.org/10.7554/eLife.64526

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.