Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling

  1. Seunghee Oh
  2. Jaehyoun Lee
  3. Selene K Swanson
  4. Laurence Florens
  5. Michael P Washburn
  6. Jerry L Workman  Is a corresponding author
  1. Stowers Institute for Medical Research, United States
  2. Stowers Institute of Medical Research, United States

Abstract

Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast orthologue of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMPK directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.

Data availability

Original data underlying this manuscript can be accessed from the Stowers Original Data Repository at http://www.stowers.org/research/publications/libpb-1536.

Article and author information

Author details

  1. Seunghee Oh

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6701-9473
  2. Jaehyoun Lee

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  3. Selene K Swanson

    Stowers Institute of Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  4. Laurence Florens

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  5. Michael P Washburn

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-2585
  6. Jerry L Workman

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    jlw@Stowers.org
    Competing interests
    Jerry L Workman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8163-1952

Funding

Stowers Institute for Medical Research (Workman Lab)

  • Jerry L Workman

National Institute of General Medical Sciences (R35GM118068)

  • Jerry L Workman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Oh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,183
    views
  • 180
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seunghee Oh
  2. Jaehyoun Lee
  3. Selene K Swanson
  4. Laurence Florens
  5. Michael P Washburn
  6. Jerry L Workman
(2020)
Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling
eLife 9:e64588.
https://doi.org/10.7554/eLife.64588

Share this article

https://doi.org/10.7554/eLife.64588

Further reading

    1. Chromosomes and Gene Expression
    Daphne R Knudsen-Palmer, Pravrutha Raman ... Antony M Jose
    Research Article

    Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematode Caenorhabditis elegans can selectively impair the silencing of some genes. Here, we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changing cis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells, and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, are enriched within ‘pUG zones’ matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs.

    1. Chromosomes and Gene Expression
    Shuvra Shekhar Roy, Sulochana Bagri ... Shantanu Chowdhury
    Research Article

    Although the role of G-quadruplex (G4) DNA structures has been suggested in chromosomal looping this was not tested directly. Here, to test causal function, an array of G4s, or control sequence that does not form G4s, were inserted within chromatin in cells. In vivo G4 formation of the inserted G4 sequence array, and not the control sequence, was confirmed using G4-selective antibody. Compared to the control insert, we observed a remarkable increase in the number of 3D chromatin looping interactions from the inserted G4 array. This was evident within the immediate topologically associated domain (TAD) and throughout the genome. Locally, recruitment of enhancer histone marks and the transcriptional coactivator p300/Acetylated-p300 increased in the G4-array, but not in the control insertion. Resulting promoter-enhancer interactions and gene activation were clear up to 5 Mb away from the insertion site. Together, these show the causal role of G4s in enhancer function and long-range chromatin interactions. Mechanisms of 3D topology are primarily based on DNA-bound architectural proteins that induce/stabilize long-range interactions. Involvement of the underlying intrinsic DNA sequence/structure in 3D looping shown here therefore throws new light on how long-range chromosomal interactions might be induced or maintained.