Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling

  1. Seunghee Oh
  2. Jaehyoun Lee
  3. Selene K Swanson
  4. Laurence Florens
  5. Michael P Washburn
  6. Jerry L Workman  Is a corresponding author
  1. Stowers Institute for Medical Research, United States
  2. Stowers Institute of Medical Research, United States

Abstract

Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast orthologue of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMPK directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.

Data availability

Original data underlying this manuscript can be accessed from the Stowers Original Data Repository at http://www.stowers.org/research/publications/libpb-1536.

Article and author information

Author details

  1. Seunghee Oh

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6701-9473
  2. Jaehyoun Lee

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  3. Selene K Swanson

    Stowers Institute of Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  4. Laurence Florens

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
  5. Michael P Washburn

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7568-2585
  6. Jerry L Workman

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    jlw@Stowers.org
    Competing interests
    Jerry L Workman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8163-1952

Funding

Stowers Institute for Medical Research (Workman Lab)

  • Jerry L Workman

National Institute of General Medical Sciences (R35GM118068)

  • Jerry L Workman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xiaobing Shi, Van Andel Institute, United States

Version history

  1. Received: November 3, 2020
  2. Accepted: December 26, 2020
  3. Accepted Manuscript published: December 29, 2020 (version 1)
  4. Version of Record published: January 4, 2021 (version 2)

Copyright

© 2020, Oh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,158
    views
  • 170
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seunghee Oh
  2. Jaehyoun Lee
  3. Selene K Swanson
  4. Laurence Florens
  5. Michael P Washburn
  6. Jerry L Workman
(2020)
Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling
eLife 9:e64588.
https://doi.org/10.7554/eLife.64588

Share this article

https://doi.org/10.7554/eLife.64588

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Mathew Thayer, Michael B Heskett ... Phillip A Yates
    Research Article

    ASARs are a family of very-long noncoding RNAs that control replication timing on individual human autosomes, and are essential for chromosome stability. The eight known ASAR lncRNAs remain closely associated with their parent chromosomes. Analysis of RNA-protein interaction data (from ENCODE) revealed numerous RBPs with significant interactions with multiple ASAR lncRNAs, with several hnRNPs as abundant interactors. An ~7 kb domain within the ASAR6-141 lncRNA shows a striking density of RBP interaction sites. Genetic deletion and ectopic integration assays indicate that this ~7 kb RNA binding protein domain contains functional sequences for controlling replication timing of entire chromosomes in cis. shRNA-mediated depletion of 10 different RNA binding proteins, including HNRNPA1, HNRNPC, HNRNPL, HNRNPM, HNRNPU, or HNRNPUL1, results in dissociation of ASAR lncRNAs from their chromosome territories, and disrupts the synchronous replication that occurs on all autosome pairs, recapitulating the effect of individual ASAR knockouts on a genome-wide scale. Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article Updated

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity biotinylation method targeting the RNA and proteins constituents. The method that we termed antibody-mediated proximity labelling coupled to mass spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X chromosome in Drosophila. This analysis identified a number of known RNA-binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein–RNA interactions in biologically diverse domains.