CDK control pathways integrate cell size and ploidy information to control cell division

  1. James Oliver Patterson  Is a corresponding author
  2. Souradeep Basu  Is a corresponding author
  3. Paul Rees
  4. Paul Nurse
  1. The Francis Crick Institute, United Kingdom
  2. Swansea University, United Kingdom

Abstract

Maintenance of cell size homeostasis is a property that is conserved throughout eukaryotes. Cell size homeostasis is brought about by the co-ordination of cell division with cell growth, and requires restriction of smaller cells from undergoing mitosis and cell division, whilst allowing larger cells to do so. Cyclin-CDK is the fundamental driver of mitosis and therefore ultimately ensures size homeostasis. Here we dissect determinants of CDK activity in vivo to investigate how cell size information is processed by the cell cycle network in fission yeast. We develop a high-throughput single-cell assay system of CDK activity in vivo and show that inhibitory tyrosine phosphorylation of CDK encodes cell size information, with the phosphatase PP2A aiding to set a size threshold for division. CDK inhibitory phosphorylation works synergistically with PP2A to prevent mitosis in smaller cells. Finally, we find that diploid cells of equivalent size to haploid cells exhibit lower CDK activity in response to equal cyclin-CDK enzyme concentrations, suggesting that CDK activity is reduced by increased DNA levels. Therefore, scaling of cyclin-CDK levels with cell size, CDK inhibitory phosphorylation, PP2A, and DNA-dependent inhibition of CDK activity, all inform the cell cycle network of cell size, thus contributing to cell-size homeostasis.

Data availability

Analysed data has been uploaded to Figshare with the handle 10779/crick.14633037.

The following data sets were generated

Article and author information

Author details

  1. James Oliver Patterson

    Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    jamesop@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1993-4500
  2. Souradeep Basu

    Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    saz.basu@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4448-8688
  3. Paul Rees

    College of Engineering, Swansea University, Swansea, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul Nurse

    Cell Cycle Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Boehringer Ingelheim Fonds

  • James Oliver Patterson

Cancer Research UK (FC01121)

  • James Oliver Patterson
  • Souradeep Basu
  • Paul Nurse

Medical Research Council (FC01121)

  • James Oliver Patterson
  • Souradeep Basu
  • Paul Nurse

Wellcome Trust (FC01121)

  • James Oliver Patterson
  • Paul Rees
  • Paul Nurse

Wellcome Trust (214183)

  • James Oliver Patterson
  • Souradeep Basu
  • Paul Nurse

The Lord Leonard and Lady Estelle Wolfson Foundation

  • James Oliver Patterson
  • Souradeep Basu
  • Paul Nurse

Biotechnology and Biological Sciences Research Council (BB/P026818/1)

  • James Oliver Patterson
  • Paul Rees

Biotechnology and Biological Sciences Research Council (BB/N005163/1)

  • Paul Rees

National Science Foundation (1458626)

  • Paul Rees

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Patterson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,197
    views
  • 523
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Oliver Patterson
  2. Souradeep Basu
  3. Paul Rees
  4. Paul Nurse
(2021)
CDK control pathways integrate cell size and ploidy information to control cell division
eLife 10:e64592.
https://doi.org/10.7554/eLife.64592

Share this article

https://doi.org/10.7554/eLife.64592

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Pyae Hein Htet, Edward Avezov, Eric Lauga
    Research Article

    The endoplasmic reticulum (ER), the largest cellular compartment, harbours the machinery for the biogenesis of secretory proteins and lipids, calcium storage/mobilisation, and detoxification. It is shaped as layered membranous sheets interconnected with a network of tubules extending throughout the cell. Understanding the influence of the ER morphology dynamics on molecular transport may offer clues to rationalising neuro-pathologies caused by ER morphogen mutations. It remains unclear, however, how the ER facilitates its intra-luminal mobility and homogenises its content. It has been recently proposed that intra-luminal transport may be enabled by active contractions of ER tubules. To surmount the barriers to empirical studies of the minuscule spatial and temporal scales relevant to ER nanofluidics, here we exploit the principles of viscous fluid dynamics to generate a theoretical physical model emulating in silico the content motion in actively contracting nanoscopic tubular networks. The computational model reveals the luminal particle speeds, and their impact in facilitating active transport, of the active contractile behaviour of the different ER components along various time–space parameters. The results of the model indicate that reproducing transport with velocities similar to those reported experimentally in single-particle tracking would require unrealistically high values of tubule contraction site length and rate. Considering further nanofluidic scenarios, we show that width contractions of the ER’s flat domains (perinuclear sheets) generate local flows with only a short-range effect on luminal transport. Only contractions of peripheral sheets can reproduce experimental measurements, provided they are able to contract fast enough.

    1. Cell Biology
    2. Neuroscience
    Luis Sánchez-Guardado, Peyman Callejas Razavi ... Carlos Lois
    Research Article

    The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.