Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy

  1. Sierra M Barone
  2. Alberta GA Paul
  3. Lyndsey M Muehling
  4. Joanne A Lannigan
  5. William W Kwok
  6. Ronald B Turner
  7. Judith A Woodfolk
  8. Jonathan M Irish  Is a corresponding author
  1. Vanderbilt University, United States
  2. University of Virginia School of Medicine, United States
  3. Benaroya Research Institute at Virginia Mason, United States

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript published
  3. Accepted
  4. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sierra M Barone
  2. Alberta GA Paul
  3. Lyndsey M Muehling
  4. Joanne A Lannigan
  5. William W Kwok
  6. Ronald B Turner
  7. Judith A Woodfolk
  8. Jonathan M Irish
(2021)
Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy
eLife 10:e64653.
https://doi.org/10.7554/eLife.64653

Share this article

https://doi.org/10.7554/eLife.64653