Early postnatal interactions between beige adipocytes and sympathetic neurites regulate innervation of subcutaneous fat

  1. Jingyi Chi
  2. Zeran Lin
  3. William Barr
  4. Audrey Crane
  5. Xiphias Ge Zhu
  6. Paul Cohen  Is a corresponding author
  1. The Rockefeller University, United States

Abstract

While beige adipocytes have been found to associate with dense sympathetic neurites in mouse inguinal subcutaneous white fat (iWAT), little is known about when and how this patterning is established. Here, we applied whole-tissue imaging to examine the development of sympathetic innervation in iWAT. We found that parenchymal neurites actively grow between postnatal day 6 (P6) and P28, overlapping with early postnatal beige adipogenesis. Constitutive deletion of Prdm16 in adipocytes led to a significant reduction in early postnatal beige adipocytes and sympathetic density within this window. Using an inducible, adipocyte-specific Prdm16 knockout model, we found that Prdm16 is required for guiding sympathetic growth during early development. Deleting Prdm16 in adult animals, however, did not affect sympathetic structure in iWAT. Together, these findings highlight that beige adipocyte-sympathetic neurite communication is crucial to establish sympathetic structure during the early postnatal period but may be dispensable for its maintenance in mature animals.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jingyi Chi

    Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zeran Lin

    Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. William Barr

    Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Audrey Crane

    Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiphias Ge Zhu

    Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul Cohen

    Laboratory of Molecular Metabolism, The Rockefeller University, New York, United States
    For correspondence
    pcohen@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2786-8585

Funding

Leona M. and Harry B. Helmsley Charitable Trust (Center for Basic and Translational Research on Disorders of the Digestive System Pilot Award)

  • Jingyi Chi

National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK120649)

  • Paul Cohen

American Diabetes Association (Grant # 1-17-ACE-17)

  • Paul Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#18016-H) of The Rockefeller University.

Version history

  1. Received: November 7, 2020
  2. Accepted: February 15, 2021
  3. Accepted Manuscript published: February 16, 2021 (version 1)
  4. Version of Record published: March 24, 2021 (version 2)

Copyright

© 2021, Chi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,334
    Page views
  • 334
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jingyi Chi
  2. Zeran Lin
  3. William Barr
  4. Audrey Crane
  5. Xiphias Ge Zhu
  6. Paul Cohen
(2021)
Early postnatal interactions between beige adipocytes and sympathetic neurites regulate innervation of subcutaneous fat
eLife 10:e64693.
https://doi.org/10.7554/eLife.64693

Share this article

https://doi.org/10.7554/eLife.64693

Further reading

    1. Developmental Biology
    2. Neuroscience
    Tariq Zaman, Daniel Vogt ... Michael R Williams
    Research Article

    The cell-type-specific expression of ligand/receptor and cell-adhesion molecules is a fundamental mechanism through which neurons regulate connectivity. Here, we determine a functional relevance of the long-established mutually exclusive expression of the receptor tyrosine kinase Kit and the trans-membrane protein Kit Ligand by discrete populations of neurons in the mammalian brain. Kit is enriched in molecular layer interneurons (MLIs) of the cerebellar cortex (i.e., stellate and basket cells), while cerebellar Kit Ligand is selectively expressed by a target of their inhibition, Purkinje cells (PCs). By in vivo genetic manipulation spanning embryonic development through adulthood, we demonstrate that PC Kit Ligand and MLI Kit are required for, and capable of driving changes in, the inhibition of PCs. Collectively, these works in mice demonstrate that the Kit Ligand/Kit receptor dyad sustains mammalian central synapse function and suggest a rationale for the affiliation of Kit mutation with neurodevelopmental disorders.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD-subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD-subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.