A novel, ataxic mouse model of Ataxia Telangiectasia caused by a clinically relevant nonsense mutation

  1. Harvey Perez
  2. May F Abdallah
  3. Jose I Chavira
  4. Angelina S Norris
  5. Martin T Egeland
  6. Karen L Vo
  7. Callan L Buechsenschuetz
  8. Valentina Sanghez
  9. Jeannie L Kim
  10. Molly Pind
  11. Kotoka Nakamura
  12. Geoffrey G Hicks
  13. Richard A Gatti
  14. Joaquin Madrenas
  15. Michelina Iacovino
  16. Peter McKinnon
  17. Paul J Mathews  Is a corresponding author
  1. The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, United States
  2. University of Manitoba, Canada
  3. University of California, Los Angeles, United States
  4. St Jude Children's Research Hospital, United States

Abstract

Ataxia Telangiectasia (A-T) and Ataxia with Ocular Apraxia Type 1 (AOA1) are devastating neurological disorders caused by null mutations in the genome stability genes, A-T mutated (ATM) and Aprataxin (APTX), respectively. Our mechanistic understanding and therapeutic repertoire for treating these disorders is severely lacking, in large part due to the failure of prior animal models with similar null mutations to recapitulate the characteristic loss of motor coordination (i.e., ataxia) and associated cerebellar defects. By increasing genotoxic stress through the insertion of null mutations in both the Atm (nonsense) and Aptx (knockout) genes in the same animal, we have generated a novel mouse model that for the first time develops a progressively severe ataxic phenotype associated with atrophy of the cerebellar molecular layer. We find biophysical properties of cerebellar Purkinje neurons are significantly perturbed (e.g., reduced membrane capacitance, lower action potential thresholds, etc.), while properties of synaptic inputs remain largely unchanged. These perturbations significantly alter Purkinje neuron neural activity, including a progressive reduction in spontaneous action potential firing frequency that correlates with both cerebellar atrophy and ataxia over the animal’s first year of life. Double mutant mice also exhibit a high predisposition to developing cancer (thymomas) and immune abnormalities (impaired early thymocyte development and T-cell maturation), symptoms characteristic of A-T. Lastly, by inserting a clinically relevant nonsense-type null mutation in Atm, we demonstrate that Small Molecule Read-Through (SMRT) compounds can restore ATM production, indicating their potential as a future A-T therapeutic.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting source data files.

Article and author information

Author details

  1. Harvey Perez

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. May F Abdallah

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose I Chavira

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Angelina S Norris

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Martin T Egeland

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Karen L Vo

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Callan L Buechsenschuetz

    Undergraduate Studies, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Valentina Sanghez

    Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jeannie L Kim

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Molly Pind

    Biochemistry and Medical Genetics, University of Manitoba, Manitoba, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Kotoka Nakamura

    Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Geoffrey G Hicks

    Department of Biochemistry and Medical Genetics, University of Manitoba, Manitoba, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Richard A Gatti

    Department of Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Joaquin Madrenas

    Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6191-3733
  15. Michelina Iacovino

    Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Peter McKinnon

    St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Paul J Mathews

    Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, United States
    For correspondence
    pmathews@ucla.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1991-0798

Funding

National Institute of Neurological Disorders and Stroke (R21NS108117)

  • Paul J Mathews

Sparks (13CAL01)

  • Richard A Gatti

National Institute of Neurological Disorders and Stroke (R33NS096044)

  • Michelina Iacovino

National Institute of Neurological Disorders and Stroke (R21NS108117-01S1)

  • Paul J Mathews

National Institute of Neurological Disorders and Stroke (R03NS103066)

  • Paul J Mathews

American Lebanese and Syrian Associated Charities of St. Jude Children's Hospital (N/A)

  • Peter McKinnon

National Institute of Neurological Disorders and Stroke (R01NS037956)

  • Peter McKinnon

National Cancer Institute (P01CA096832)

  • Peter McKinnon

National Center for Advancing Translational Sciences (UL1TR001881)

  • Paul J Mathews

Manitoba Research Innovation (312864)

  • Geoffrey G Hicks

Cancer Care Manitoba Foundation (761023032)

  • Geoffrey G Hicks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the animals were handled according to approved institutional animal care and use committee (IACUC) protocols at The Lundquist Institute (31374-03, 31773-02) and UCLA (ARC-2007-082, ARC-2013-068). The protocol was approved by the Committee on the Ethics of Animal Experiments of the Lundquist Institute (Assurance Number: D16-00213). Every effort was made to minimize pain and suffering by providing support when necessary and choosing ethical endpoints.

Copyright

© 2021, Perez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,582
    views
  • 315
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Harvey Perez
  2. May F Abdallah
  3. Jose I Chavira
  4. Angelina S Norris
  5. Martin T Egeland
  6. Karen L Vo
  7. Callan L Buechsenschuetz
  8. Valentina Sanghez
  9. Jeannie L Kim
  10. Molly Pind
  11. Kotoka Nakamura
  12. Geoffrey G Hicks
  13. Richard A Gatti
  14. Joaquin Madrenas
  15. Michelina Iacovino
  16. Peter McKinnon
  17. Paul J Mathews
(2021)
A novel, ataxic mouse model of Ataxia Telangiectasia caused by a clinically relevant nonsense mutation
eLife 10:e64695.
https://doi.org/10.7554/eLife.64695

Share this article

https://doi.org/10.7554/eLife.64695

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.