Rapid recycling of glutamate transporters on the astroglial surface

  1. Piotr Michaluk  Is a corresponding author
  2. Janosch Peter Heller
  3. Dmitri A Rusakov  Is a corresponding author
  1. National Academy of Sciences, Poland
  2. Royal College of Surgeons Ireland - RCSI, Ireland
  3. University College London, United Kingdom

Abstract

Glutamate uptake by astroglial transporters confines excitatory transmission to the synaptic cleft. The efficiency of this mechanism depends on the transporter dynamics in the astrocyte membrane, which remains poorly understood. Here, we visualise the main glial glutamate transporter GLT1 by generating its pH-sensitive fluorescent analogue, GLT1-SEP. FRAP-based imaging shows that 70-75% of GLT1-SEP dwell on the surface of rat brain astroglia, recycling with a lifetime of ~22 s. Genetic deletion of the C-terminus accelerates GLT1-SEP membrane turnover while disrupting its surface pattern, as revealed by single-molecule localisation microscopy. Excitatory activity boosts surface mobility of GLT1-SEP, involving its C-terminus, metabotropic glutamate receptors, intracellular Ca2+ and calcineurin-phosphatase activity, but not the broad-range kinase activity. The results suggest that membrane turnover, rather than lateral diffusion, is the main 'redeployment' route for the immobile fraction (20-30%) of surface-expressed GLT1. This finding reveals an important mechanism helping to control extrasynaptic escape of glutamate.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for each corresponding Figure.

Article and author information

Author details

  1. Piotr Michaluk

    Nencki Institute of Experimental Biology, National Academy of Sciences, Warsaw, Poland
    For correspondence
    p.michaluk@nencki.edu.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2306-3314
  2. Janosch Peter Heller

    FutureNeuro, Royal College of Surgeons Ireland - RCSI, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Dmitri A Rusakov

    UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
    For correspondence
    d.rusakov@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9539-9947

Funding

Wellcome Trust (212251_Z_18_Z)

  • Dmitri A Rusakov

H2020 European Research Council (857562)

  • Dmitri A Rusakov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal expeirments were carried out in accordance with the national guideline and the European Communities Council Directive 0f November 1986, the European Directive 2010/63/EU on the Protection of Animals used for Scientific Purposes, and the United Kingdom Home Office (Scientific Procedures) Act of 1986, under UK Home Office Project licence PPL707524.

Copyright

© 2021, Michaluk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,049
    views
  • 323
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Piotr Michaluk
  2. Janosch Peter Heller
  3. Dmitri A Rusakov
(2021)
Rapid recycling of glutamate transporters on the astroglial surface
eLife 10:e64714.
https://doi.org/10.7554/eLife.64714

Share this article

https://doi.org/10.7554/eLife.64714

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.