Global epistasis emerges from a generic model of a complex trait
Abstract
Epistasis between mutations makes adaptation contingent on evolutionary history. Yet despite widespread 'microscopic' epistasis between the mutations involved, microbial evolution experiments show consistent patterns of fitness increase between replicate lines. Recent work shows that this consistency is driven in part by global patterns of diminishing-returns and increasing-costs epistasis, which make mutations systematically less beneficial (or more deleterious) on fitter genetic backgrounds. However, the origin of this 'global' epistasis remains unknown. Here we show that diminishing-returns and increasing-costs epistasis emerge generically as a consequence of pervasive microscopic epistasis. Our model predicts a specific quantitative relationship between the magnitude of global epistasis and the stochastic effects of microscopic epistasis, which we confirm by re-analyzing existing data. We further show that the distribution of fitness effects has a universal form when epistasis is widespread, and introduce a novel fitness landscape model to show how phenotypic evolution can be repeatable despite sequence-level stochasticity.
Data availability
The code and data used to generate the figures are available at https://github.com/greddy992/global_epistasis.
-
Long-term dynamics of adaptation in asexual populationsDOI: 10.1126/science.1243357.
-
Higher-fitness yeast genotypes are less robust to deleterious mutationsDOI: 10.1126/science.aay4199.
Article and author information
Author details
Funding
Simons Foundation (NSF-Simons Center at Harvard #1764269)
- Gautam Reddy
Simons Foundation (376196)
- Michael M Desai
National Science Foundation (PHY-1914916)
- Michael M Desai
National Institutes of Health (R01GM104239)
- Michael M Desai
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Naama Barkai, Weizmann Institute of Science, Israel
Version history
- Received: November 9, 2020
- Accepted: March 26, 2021
- Accepted Manuscript published: March 29, 2021 (version 1)
- Version of Record published: April 20, 2021 (version 2)
Copyright
© 2021, Reddy & Desai
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,464
- Page views
-
- 409
- Downloads
-
- 25
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Evolutionary Biology
Changes in an organism’s environment, genome, or gene expression patterns can lead to changes in its metabolism. The metabolic phenotype can be under selection and contributes to adaptation. However, the networked and convoluted nature of an organism’s metabolism makes relating mutations, metabolic changes, and effects on fitness challenging. To overcome this challenge, we use the long-term evolution experiment (LTEE) with E. coli as a model to understand how mutations can eventually affect metabolism and perhaps fitness. We used mass spectrometry to broadly survey the metabolomes of the ancestral strains and all 12 evolved lines. We combined this metabolic data with mutation and expression data to suggest how mutations that alter specific reaction pathways, such as the biosynthesis of nicotinamide adenine dinucleotide, might increase fitness in the system. Our work provides a better understanding of how mutations might affect fitness through the metabolic changes in the LTEE and thus provides a major step in developing a complete genotype–phenotype map for this experimental system.
-
- Ecology
- Evolutionary Biology
Temperature determines the geographical distribution of organisms and affects the outbreak and damage of pests. Insects seasonal polyphenism is a successful strategy adopted by some species to adapt the changeable external environment. Cacopsylla chinensis (Yang & Li) showed two seasonal morphotypes, summer-form and winter-form, with significant differences in morphological characteristics. Low temperature is the key environmental factor to induce its transition from summer-form to winter-form. However, the detailed molecular mechanism remains unknown. Here, we firstly confirmed that low temperature of 10 °C induced the transition from summer-form to winter-form by affecting the cuticle thickness and chitin content. Subsequently, we demonstrated that CcTRPM functions as a temperature receptor to regulate this transition. In addition, miR-252 was identified to mediate the expression of CcTRPM to involve in this morphological transition. Finally, we found CcTre1 and CcCHS1, two rate-limiting enzymes of insect chitin biosyntheis, act as the critical down-stream signal of CcTRPM in mediating this behavioral transition. Taken together, our results revealed that a signal transduction cascade mediates the seasonal polyphenism in C. chinensis. These findings not only lay a solid foundation for fully clarifying the ecological adaptation mechanism of C. chinensis outbreak, but also broaden our understanding about insect polymorphism.