Abstract

Axon navigation depends on the interactions between guidance molecules along the trajectory and specific receptors on the growth cone. However, our in vitro and in vivo studies on the role of Endoglycan demonstrate that in addition to specific guidance cue – receptor interactions, axon guidance depends on fine-tuning of cell-cell adhesion. Endoglycan, a sialomucin, plays a role in axon guidance in the central nervous system of chicken embryos, but it is neither an axon guidance cue nor a receptor. Rather Endoglycan acts as a negative regulator of molecular interactions based on evidence from in vitro experiments demonstrating reduced adhesion of growth cones . In the absence of Endoglycan, commissural axons fail to properly navigate the midline of the spinal cord. Taken together, our in vivo and in vitro results support the hypothesis that Endoglycan acts as a negative regulator of cell-cell adhesion, in commissural axon guidance.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Thomas Baeriswyl

    Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandre Dumoulin

    Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2420-6877
  3. Martina Schaettin

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Georgia Tsapara

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Vera Niederkofler

    Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Denise Helbling

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Evelyn Avilés

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeannine A Frei

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicole H Wilson

    Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthias Gesemann

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Beat Kunz

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Esther T Stoeckli

    Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
    For correspondence
    esther.stoeckli@mls.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8485-0648

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

  • Esther T Stoeckli

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Brain Plasticy and Repair)

  • Esther T Stoeckli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Baeriswyl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,396
    views
  • 198
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas Baeriswyl
  2. Alexandre Dumoulin
  3. Martina Schaettin
  4. Georgia Tsapara
  5. Vera Niederkofler
  6. Denise Helbling
  7. Evelyn Avilés
  8. Jeannine A Frei
  9. Nicole H Wilson
  10. Matthias Gesemann
  11. Beat Kunz
  12. Esther T Stoeckli
(2021)
Endoglycan plays a role in axon guidance by modulating cell adhesion
eLife 10:e64767.
https://doi.org/10.7554/eLife.64767

Share this article

https://doi.org/10.7554/eLife.64767

Further reading

    1. Neuroscience
    Nishal Pradeepbhai Shah, AJ Phillips ... EJ Chichilnisky
    Tools and Resources

    Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.

    1. Neuroscience
    Chad Heer, Mark Sheffield
    Research Article

    Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals’ running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal’s transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.