Myelinating Schwann cells and Netrin-1 control intra-nervous vascularization of the developing mouse sciatic nerve

  1. Sonia Taïb
  2. Noël Lamandé
  3. Sabrina Martin
  4. Fanny Coulpier
  5. Piotr Topilko
  6. Isabelle Brunet  Is a corresponding author
  1. Collège de France, France
  2. Institut Mondor de Recherche Biomédicale, France

Abstract

Peripheral nerves are vascularized by a dense network of blood vessels to guarantee their complex function. Despite the crucial role of vascularization to ensure nerve homeostasis and regeneration, the mechanisms governing nerve invasion by blood vessels remain poorly understood. We found, in mice, that the sciatic nerve invasion by blood vessels begins around embryonic day 16 and continues until birth. Interestingly, intra-nervous blood vessel density significantly decreases during post-natal period, starting from P10. We show that, while the axon guidance molecule Netrin-1 promotes nerve invasion by blood vessels via the endothelial receptor UNC5B during embryogenesis, myelinated Schwann cells negatively control intra-nervous vascularization during postnatal period.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Sonia Taïb

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9981-5204
  2. Noël Lamandé

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabrina Martin

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Fanny Coulpier

    UMR U955 INSERM UPEC, Institut Mondor de Recherche Biomédicale, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Piotr Topilko

    UMR U955 INSERM UPEC, Institut Mondor de Recherche Biomédicale, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7381-6770
  6. Isabelle Brunet

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    For correspondence
    isabelle.brunet@college-de-france.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5490-2937

Funding

Ligue Contre le Cancer

  • Sonia Taïb Taïb

Fondation du Collège de France

  • Sonia Taïb Taïb
  • Isabelle Brunet

LabEx Memolife

  • Sonia Taïb Taïb

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Taïb et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,063
    views
  • 302
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Taïb
  2. Noël Lamandé
  3. Sabrina Martin
  4. Fanny Coulpier
  5. Piotr Topilko
  6. Isabelle Brunet
(2022)
Myelinating Schwann cells and Netrin-1 control intra-nervous vascularization of the developing mouse sciatic nerve
eLife 11:e64773.
https://doi.org/10.7554/eLife.64773

Share this article

https://doi.org/10.7554/eLife.64773

Further reading

    1. Developmental Biology
    Yufei Wu, Sean X Sun
    Insight

    Proteins that allow water to move in and out of cells help shape the development of new blood vessels.

    1. Developmental Biology
    2. Neuroscience
    Maria I Lazaro-Pena, Carlos A Diaz-Balzac
    Insight

    The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.