Highly parallelized droplet cultivation and prioritization on antibiotic producers from natural microbial communities

  1. Lisa Mahler
  2. Sarah P Niehs
  3. Karin Martin
  4. Thomas Weber
  5. Kirstin Scherlach
  6. Christian Hertweck
  7. Martin Roth
  8. Miriam A Rosenbaum  Is a corresponding author
  1. Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Germany

Abstract

Antibiotics from few culturable microorganisms have saved millions of lives since the 20th century. But with resistance formation, these compounds become increasingly ineffective, while the majority of microbial and with that chemical compound diversity remains inaccessible for cultivation and exploration. Culturing recalcitrant bacteria is a stochastic process. But conventional methods are limited to low throughput. By increasing (i) throughput and (ii) sensitivity by miniaturization, we innovate microbiological cultivation to comply with biological stochasticity. Here, we introduce a droplet-based microscale-cultivation system, which is directly coupled to a high-throughput screening for antimicrobial activity prior to strain isolation. We demonstrate that highly parallelized in-droplet cultivation starting from single cells results in the cultivation of yet uncultured species and a significantly higher bacterial diversity than standard agar plate cultivation. Strains able to inhibit intact reporter strains were isolated from the system. A variety of antimicrobial compounds were detected for a selected potent antibiotic producer.

Data availability

- Amplicon sequence data were deposited to NCBI under the BioProject accession numbers PRJNA623865. For isolated axenic strains, 16S rRNA gene sequences were deposited to GenBank under the accession numbers MT320111 - MT320533.- Source data, encompassing numerical and or taxonomical data and R-analysis files, are provided as RData objects and R scripts for graphs: Fig 2ab, Fig 3abc, Fig 5, Fig 6.Figures 1ab, 4 and 7 do not contain analyzed experimental data but depict workflows and overview information.

The following data sets were generated

Article and author information

Author details

  1. Lisa Mahler

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah P Niehs

    Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Karin Martin

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Weber

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Kirstin Scherlach

    Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Christian Hertweck

    Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Roth

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Miriam A Rosenbaum

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    For correspondence
    miriam.rosenbaum@leibniz-hki.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4566-8624

Funding

Thuringian Ministry of Eduction, Scienc and Culture (13008-715)

  • Lisa Mahler
  • Karin Martin
  • Martin Roth

Thuringian Ministry of Economy, Labor and Technology (2014FE9037)

  • Lisa Mahler
  • Thomas Weber
  • Martin Roth

German Center for Infection Research DZIF (TTU 09.811)

  • Lisa Mahler
  • Karin Martin

Deutsche Forschungsgemeinschaft (GSC 214)

  • Lisa Mahler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Mahler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lisa Mahler
  2. Sarah P Niehs
  3. Karin Martin
  4. Thomas Weber
  5. Kirstin Scherlach
  6. Christian Hertweck
  7. Martin Roth
  8. Miriam A Rosenbaum
(2021)
Highly parallelized droplet cultivation and prioritization on antibiotic producers from natural microbial communities
eLife 10:e64774.
https://doi.org/10.7554/eLife.64774

Share this article

https://doi.org/10.7554/eLife.64774

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.