1. Microbiology and Infectious Disease
Download icon

Highly parallelized droplet cultivation and prioritization on antibiotic producers from natural microbial communities

  1. Lisa Mahler
  2. Sarah P Niehs
  3. Karin Martin
  4. Thomas Weber
  5. Kirstin Scherlach
  6. Christian Hertweck
  7. Martin Roth
  8. Miriam A Rosenbaum  Is a corresponding author
  1. Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Germany
Research Article
  • Cited 0
  • Views 954
  • Annotations
Cite this article as: eLife 2021;10:e64774 doi: 10.7554/eLife.64774

Abstract

Antibiotics from few culturable microorganisms have saved millions of lives since the 20th century. But with resistance formation, these compounds become increasingly ineffective, while the majority of microbial and with that chemical compound diversity remains inaccessible for cultivation and exploration. Culturing recalcitrant bacteria is a stochastic process. But conventional methods are limited to low throughput. By increasing (i) throughput and (ii) sensitivity by miniaturization, we innovate microbiological cultivation to comply with biological stochasticity. Here, we introduce a droplet-based microscale-cultivation system, which is directly coupled to a high-throughput screening for antimicrobial activity prior to strain isolation. We demonstrate that highly parallelized in-droplet cultivation starting from single cells results in the cultivation of yet uncultured species and a significantly higher bacterial diversity than standard agar plate cultivation. Strains able to inhibit intact reporter strains were isolated from the system. A variety of antimicrobial compounds were detected for a selected potent antibiotic producer.

Data availability

- Amplicon sequence data were deposited to NCBI under the BioProject accession numbers PRJNA623865. For isolated axenic strains, 16S rRNA gene sequences were deposited to GenBank under the accession numbers MT320111 - MT320533.- Source data, encompassing numerical and or taxonomical data and R-analysis files, are provided as RData objects and R scripts for graphs: Fig 2ab, Fig 3abc, Fig 5, Fig 6.Figures 1ab, 4 and 7 do not contain analyzed experimental data but depict workflows and overview information.

The following data sets were generated

Article and author information

Author details

  1. Lisa Mahler

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah P Niehs

    Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Karin Martin

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Weber

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Kirstin Scherlach

    Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Christian Hertweck

    Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin Roth

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Miriam A Rosenbaum

    Bio Pilot Plant, Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
    For correspondence
    miriam.rosenbaum@leibniz-hki.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4566-8624

Funding

Thuringian Ministry of Eduction, Scienc and Culture (13008-715)

  • Lisa Mahler
  • Karin Martin
  • Martin Roth

Thuringian Ministry of Economy, Labor and Technology (2014FE9037)

  • Lisa Mahler
  • Thomas Weber
  • Martin Roth

German Center for Infection Research DZIF (TTU 09.811)

  • Lisa Mahler
  • Karin Martin

Deutsche Forschungsgemeinschaft (GSC 214)

  • Lisa Mahler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Publication history

  1. Received: November 10, 2020
  2. Accepted: March 19, 2021
  3. Accepted Manuscript published: March 25, 2021 (version 1)

Copyright

© 2021, Mahler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 954
    Page views
  • 200
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Andrew A Bridges, Bonnie L Bassler
    Research Article

    The global pathogen Vibrio cholerae undergoes cycles of biofilm formation and dispersal in the environment and the human host. Little is understood about biofilm dispersal. Here, we show that MbaA, a periplasmic polyamine sensor, and PotD1, a polyamine importer, regulate V. cholerae biofilm dispersal. Spermidine, a commonly produced polyamine, drives V. cholerae dispersal, whereas norspermidine, an uncommon polyamine produced by vibrios, inhibits dispersal. Spermidine and norspermidine differ by one methylene group. Both polyamines control dispersal via MbaA detection in the periplasm and subsequent signal relay. Our results suggest that dispersal fails in the absence of PotD1 because endogenously produced norspermidine is not reimported, periplasmic norspermidine accumulates, and it stimulates MbaA signaling. These results suggest that V. cholerae uses MbaA to monitor environmental polyamines, blends of which potentially provide information about numbers of 'self' and 'other'. This information is used to dictate whether or not to disperse from biofilms.

    1. Microbiology and Infectious Disease
    Anahita Bakochi et al.
    Research Article Updated

    Meningitis is a potentially life-threatening infection characterized by the inflammation of the leptomeningeal membranes. Many different viral and bacterial pathogens can cause meningitis, with differences in mortality rates, risk of developing neurological sequelae, and treatment options. Here, we constructed a compendium of digital cerebrospinal fluid (CSF) proteome maps to define pathogen-specific host response patterns in meningitis. The results revealed a drastic and pathogen-type specific influx of tissue-, cell-, and plasma proteins in the CSF, where, in particular, a large increase of neutrophil-derived proteins in the CSF correlated with acute bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked reduction of brain-enriched proteins. Generation of a multiprotein LASSO regression model resulted in an 18-protein panel of cell- and tissue-associated proteins capable of classifying acute bacterial meningitis and viral meningitis. The same protein panel also enabled classification of tick-borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The work provides insights into pathogen-specific host response patterns in CSF from different disease etiologies to support future classification of pathogen type based on host response patterns in meningitis.