Abstract

Pannexin 1 (Panx1) is a membrane channel implicated in numerous physiological and pathophysiological processes via its ability to support release of ATP and other cellular metabolites for local intercellular signaling. However, to date, there has been no direct demonstration of large molecule permeation via the Panx1 channel itself, and thus the permselectivity of Panx1 for different molecules remains unknown. To address this, we expressed, purified and reconstituted Panx1 into proteoliposomes and demonstrated that channel activation by caspase cleavage yields a dye-permeable pore that favors flux of anionic, large-molecule permeants (up to ~1 kDa). Large cationic molecules can also permeate the channel, albeit at a much lower rate. We further show that Panx1 channels provide a molecular pathway for flux of ATP and other anionic (glutamate) and cationic signaling metabolites (spermidine). These results verify large molecule permeation directly through activated Panx1 channels that can support their many physiological roles.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files (Source Data files). Source data files have been provided for Figure 1G, Figure 1 Supplement 1C, Figure 1 Supplement 2B-E, Figure 2D, Figure 2 Supplement 1, Figure 2 Supplement 2A-F, Figure 3B-I, Figure 4 B-D, Figure 4 Supplement 2B-C. Source code has been uploaded to Github: https://github.com/VolkerKirchheim/VK_TIRFsinglevesicleStep1. Data is also available on Dryad under doi:10.5061/dryad.s1rn8pk69

The following data sets were generated

Article and author information

Author details

  1. Adishesh K Narahari

    Pharmacology, University of Virginia, Charlottesville, United States
    For correspondence
    akn4uq@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8708-9161
  2. Alex J B Kreutzberger

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9774-115X
  3. Pablo S Gaete

    Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-9138
  4. Yu-Hsin Chiu

    Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4730-8104
  5. Susan A Leonhardt

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher B Medina

    Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xueyao Jin

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrycja W Oleniacz

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Volker Kiessling

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9388-5703
  10. Paula Q Barrett

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kodi S Ravichandran

    Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mark Yeager

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jorge E Contreras

    Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9203-1602
  14. Lukas K Tamm

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1674-4464
  15. Douglas Bayliss

    Pharmacology, University of Virginia, Charlottesville, United States
    For correspondence
    bayliss@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5630-2572

Funding

National Institutes of Health (P01 HL120840)

  • Kodi S Ravichandran
  • Mark Yeager
  • Douglas Bayliss

Ministry of Science and Technology, Taiwan (108-2320-B-007-007-MY2)

  • Yu-Hsin Chiu

National Institutes of Health (T32 GM007267)

  • Adishesh K Narahari

University of Virginia (Whitfield-Randolph Scholarship)

  • Adishesh K Narahari

National Institutes of Health (R01 HL138241)

  • Paula Q Barrett

National Institutes of Health (R01 GM099490)

  • Jorge E Contreras

National Institutes of Health (R01 HL48908)

  • Mark Yeager

National Institutes of Health (R01 GM138532)

  • Mark Yeager

National Institutes of Health (P01 GM072694)

  • Lukas K Tamm

National Institutes of Health (R01 GM051329)

  • Lukas K Tamm

National Institutes of Health (F30 CA236370)

  • Adishesh K Narahari

National Institutes of Health (T32 GM007055)

  • Adishesh K Narahari
  • Christopher B Medina

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Narahari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,404
    views
  • 529
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adishesh K Narahari
  2. Alex J B Kreutzberger
  3. Pablo S Gaete
  4. Yu-Hsin Chiu
  5. Susan A Leonhardt
  6. Christopher B Medina
  7. Xueyao Jin
  8. Patrycja W Oleniacz
  9. Volker Kiessling
  10. Paula Q Barrett
  11. Kodi S Ravichandran
  12. Mark Yeager
  13. Jorge E Contreras
  14. Lukas K Tamm
  15. Douglas Bayliss
(2021)
ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels
eLife 10:e64787.
https://doi.org/10.7554/eLife.64787

Share this article

https://doi.org/10.7554/eLife.64787

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.