Abstract

Pannexin 1 (Panx1) is a membrane channel implicated in numerous physiological and pathophysiological processes via its ability to support release of ATP and other cellular metabolites for local intercellular signaling. However, to date, there has been no direct demonstration of large molecule permeation via the Panx1 channel itself, and thus the permselectivity of Panx1 for different molecules remains unknown. To address this, we expressed, purified and reconstituted Panx1 into proteoliposomes and demonstrated that channel activation by caspase cleavage yields a dye-permeable pore that favors flux of anionic, large-molecule permeants (up to ~1 kDa). Large cationic molecules can also permeate the channel, albeit at a much lower rate. We further show that Panx1 channels provide a molecular pathway for flux of ATP and other anionic (glutamate) and cationic signaling metabolites (spermidine). These results verify large molecule permeation directly through activated Panx1 channels that can support their many physiological roles.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files (Source Data files). Source data files have been provided for Figure 1G, Figure 1 Supplement 1C, Figure 1 Supplement 2B-E, Figure 2D, Figure 2 Supplement 1, Figure 2 Supplement 2A-F, Figure 3B-I, Figure 4 B-D, Figure 4 Supplement 2B-C. Source code has been uploaded to Github: https://github.com/VolkerKirchheim/VK_TIRFsinglevesicleStep1. Data is also available on Dryad under doi:10.5061/dryad.s1rn8pk69

The following data sets were generated

Article and author information

Author details

  1. Adishesh K Narahari

    Pharmacology, University of Virginia, Charlottesville, United States
    For correspondence
    akn4uq@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8708-9161
  2. Alex J B Kreutzberger

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9774-115X
  3. Pablo S Gaete

    Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-9138
  4. Yu-Hsin Chiu

    Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4730-8104
  5. Susan A Leonhardt

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher B Medina

    Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xueyao Jin

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrycja W Oleniacz

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Volker Kiessling

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9388-5703
  10. Paula Q Barrett

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kodi S Ravichandran

    Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mark Yeager

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jorge E Contreras

    Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9203-1602
  14. Lukas K Tamm

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1674-4464
  15. Douglas Bayliss

    Pharmacology, University of Virginia, Charlottesville, United States
    For correspondence
    bayliss@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5630-2572

Funding

National Institutes of Health (P01 HL120840)

  • Kodi S Ravichandran
  • Mark Yeager
  • Douglas Bayliss

Ministry of Science and Technology, Taiwan (108-2320-B-007-007-MY2)

  • Yu-Hsin Chiu

National Institutes of Health (T32 GM007267)

  • Adishesh K Narahari

University of Virginia (Whitfield-Randolph Scholarship)

  • Adishesh K Narahari

National Institutes of Health (R01 HL138241)

  • Paula Q Barrett

National Institutes of Health (R01 GM099490)

  • Jorge E Contreras

National Institutes of Health (R01 HL48908)

  • Mark Yeager

National Institutes of Health (R01 GM138532)

  • Mark Yeager

National Institutes of Health (P01 GM072694)

  • Lukas K Tamm

National Institutes of Health (R01 GM051329)

  • Lukas K Tamm

National Institutes of Health (F30 CA236370)

  • Adishesh K Narahari

National Institutes of Health (T32 GM007055)

  • Adishesh K Narahari
  • Christopher B Medina

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Narahari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,350
    views
  • 519
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adishesh K Narahari
  2. Alex J B Kreutzberger
  3. Pablo S Gaete
  4. Yu-Hsin Chiu
  5. Susan A Leonhardt
  6. Christopher B Medina
  7. Xueyao Jin
  8. Patrycja W Oleniacz
  9. Volker Kiessling
  10. Paula Q Barrett
  11. Kodi S Ravichandran
  12. Mark Yeager
  13. Jorge E Contreras
  14. Lukas K Tamm
  15. Douglas Bayliss
(2021)
ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels
eLife 10:e64787.
https://doi.org/10.7554/eLife.64787

Share this article

https://doi.org/10.7554/eLife.64787

Further reading

    1. Structural Biology and Molecular Biophysics
    Joseph Clayton, Aarion Romany ... Jana Shen
    Research Article

    Aberrant signaling of BRAFV600E is a major cancer driver. Current FDA-approved RAF inhibitors selectively inhibit the monomeric BRAFV600E and suffer from tumor resistance. Recently, dimer-selective and equipotent RAF inhibitors have been developed; however, the mechanism of dimer selectivity is poorly understood. Here, we report extensive molecular dynamics (MD) simulations of the monomeric and dimeric BRAFV600E in the apo form or in complex with one or two dimer-selective (PHI1) or equipotent (LY3009120) inhibitor(s). The simulations uncovered the unprecedented details of the remarkable allostery in BRAFV600E dimerization and inhibitor binding. Specifically, dimerization retrains and shifts the αC helix inward and increases the flexibility of the DFG motif; dimer compatibility is due to the promotion of the αC-in conformation, which is stabilized by a hydrogen bond formation between the inhibitor and the αC Glu501. A more stable hydrogen bond further restrains and shifts the αC helix inward, which incurs a larger entropic penalty that disfavors monomer binding. This mechanism led us to propose an empirical way based on the co-crystal structure to assess the dimer selectivity of a BRAFV600E inhibitor. Simulations also revealed that the positive cooperativity of PHI1 is due to its ability to preorganize the αC and DFG conformation in the opposite protomer, priming it for binding the second inhibitor. The atomically detailed view of the interplay between BRAF dimerization and inhibitor allostery as well as cooperativity has implications for understanding kinase signaling and contributes to the design of protomer selective RAF inhibitors.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.