Abstract

Pannexin 1 (Panx1) is a membrane channel implicated in numerous physiological and pathophysiological processes via its ability to support release of ATP and other cellular metabolites for local intercellular signaling. However, to date, there has been no direct demonstration of large molecule permeation via the Panx1 channel itself, and thus the permselectivity of Panx1 for different molecules remains unknown. To address this, we expressed, purified and reconstituted Panx1 into proteoliposomes and demonstrated that channel activation by caspase cleavage yields a dye-permeable pore that favors flux of anionic, large-molecule permeants (up to ~1 kDa). Large cationic molecules can also permeate the channel, albeit at a much lower rate. We further show that Panx1 channels provide a molecular pathway for flux of ATP and other anionic (glutamate) and cationic signaling metabolites (spermidine). These results verify large molecule permeation directly through activated Panx1 channels that can support their many physiological roles.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files (Source Data files). Source data files have been provided for Figure 1G, Figure 1 Supplement 1C, Figure 1 Supplement 2B-E, Figure 2D, Figure 2 Supplement 1, Figure 2 Supplement 2A-F, Figure 3B-I, Figure 4 B-D, Figure 4 Supplement 2B-C. Source code has been uploaded to Github: https://github.com/VolkerKirchheim/VK_TIRFsinglevesicleStep1. Data is also available on Dryad under doi:10.5061/dryad.s1rn8pk69

The following data sets were generated

Article and author information

Author details

  1. Adishesh K Narahari

    Pharmacology, University of Virginia, Charlottesville, United States
    For correspondence
    akn4uq@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8708-9161
  2. Alex J B Kreutzberger

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9774-115X
  3. Pablo S Gaete

    Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-9138
  4. Yu-Hsin Chiu

    Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4730-8104
  5. Susan A Leonhardt

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christopher B Medina

    Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xueyao Jin

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrycja W Oleniacz

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Volker Kiessling

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9388-5703
  10. Paula Q Barrett

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kodi S Ravichandran

    Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mark Yeager

    Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Jorge E Contreras

    Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Newark, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9203-1602
  14. Lukas K Tamm

    Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1674-4464
  15. Douglas Bayliss

    Pharmacology, University of Virginia, Charlottesville, United States
    For correspondence
    bayliss@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5630-2572

Funding

National Institutes of Health (P01 HL120840)

  • Kodi S Ravichandran
  • Mark Yeager
  • Douglas Bayliss

Ministry of Science and Technology, Taiwan (108-2320-B-007-007-MY2)

  • Yu-Hsin Chiu

National Institutes of Health (T32 GM007267)

  • Adishesh K Narahari

University of Virginia (Whitfield-Randolph Scholarship)

  • Adishesh K Narahari

National Institutes of Health (R01 HL138241)

  • Paula Q Barrett

National Institutes of Health (R01 GM099490)

  • Jorge E Contreras

National Institutes of Health (R01 HL48908)

  • Mark Yeager

National Institutes of Health (R01 GM138532)

  • Mark Yeager

National Institutes of Health (P01 GM072694)

  • Lukas K Tamm

National Institutes of Health (R01 GM051329)

  • Lukas K Tamm

National Institutes of Health (F30 CA236370)

  • Adishesh K Narahari

National Institutes of Health (T32 GM007055)

  • Adishesh K Narahari
  • Christopher B Medina

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Narahari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,341
    views
  • 519
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adishesh K Narahari
  2. Alex J B Kreutzberger
  3. Pablo S Gaete
  4. Yu-Hsin Chiu
  5. Susan A Leonhardt
  6. Christopher B Medina
  7. Xueyao Jin
  8. Patrycja W Oleniacz
  9. Volker Kiessling
  10. Paula Q Barrett
  11. Kodi S Ravichandran
  12. Mark Yeager
  13. Jorge E Contreras
  14. Lukas K Tamm
  15. Douglas Bayliss
(2021)
ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels
eLife 10:e64787.
https://doi.org/10.7554/eLife.64787

Share this article

https://doi.org/10.7554/eLife.64787

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.