ATP and large signaling metabolites flux through caspase-activated Pannexin 1 channels
Abstract
Pannexin 1 (Panx1) is a membrane channel implicated in numerous physiological and pathophysiological processes via its ability to support release of ATP and other cellular metabolites for local intercellular signaling. However, to date, there has been no direct demonstration of large molecule permeation via the Panx1 channel itself, and thus the permselectivity of Panx1 for different molecules remains unknown. To address this, we expressed, purified and reconstituted Panx1 into proteoliposomes and demonstrated that channel activation by caspase cleavage yields a dye-permeable pore that favors flux of anionic, large-molecule permeants (up to ~1 kDa). Large cationic molecules can also permeate the channel, albeit at a much lower rate. We further show that Panx1 channels provide a molecular pathway for flux of ATP and other anionic (glutamate) and cationic signaling metabolites (spermidine). These results verify large molecule permeation directly through activated Panx1 channels that can support their many physiological roles.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files (Source Data files). Source data files have been provided for Figure 1G, Figure 1 Supplement 1C, Figure 1 Supplement 2B-E, Figure 2D, Figure 2 Supplement 1, Figure 2 Supplement 2A-F, Figure 3B-I, Figure 4 B-D, Figure 4 Supplement 2B-C. Source code has been uploaded to Github: https://github.com/VolkerKirchheim/VK_TIRFsinglevesicleStep1. Data is also available on Dryad under doi:10.5061/dryad.s1rn8pk69
-
Data from: Caspase-activated Pannexin 1 channels favor anionic molecules and support flux of ATP and other signaling metabolitesDryad Digital Repository, 10.5061/dryad.s1rn8pk69.
Article and author information
Author details
Funding
National Institutes of Health (P01 HL120840)
- Kodi S Ravichandran
- Mark Yeager
- Douglas Bayliss
Ministry of Science and Technology, Taiwan (108-2320-B-007-007-MY2)
- Yu-Hsin Chiu
National Institutes of Health (T32 GM007267)
- Adishesh K Narahari
University of Virginia (Whitfield-Randolph Scholarship)
- Adishesh K Narahari
National Institutes of Health (R01 HL138241)
- Paula Q Barrett
National Institutes of Health (R01 GM099490)
- Jorge E Contreras
National Institutes of Health (R01 HL48908)
- Mark Yeager
National Institutes of Health (R01 GM138532)
- Mark Yeager
National Institutes of Health (P01 GM072694)
- Lukas K Tamm
National Institutes of Health (R01 GM051329)
- Lukas K Tamm
National Institutes of Health (F30 CA236370)
- Adishesh K Narahari
National Institutes of Health (T32 GM007055)
- Adishesh K Narahari
- Christopher B Medina
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Baron Chanda, Washington University in St. Louis, United States
Publication history
- Received: November 11, 2020
- Accepted: January 5, 2021
- Accepted Manuscript published: January 7, 2021 (version 1)
- Version of Record published: January 13, 2021 (version 2)
Copyright
© 2021, Narahari et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,665
- Page views
-
- 440
- Downloads
-
- 34
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Structural Biology and Molecular Biophysics
Volume-regulated anion channels (VRACs) mediate volume regulatory Cl- and organic solute efflux from vertebrate cells. VRACs are heteromeric assemblies of LRRC8A-E proteins with unknown stoichiometries. Homomeric LRRC8A and LRRC8D channels have a small pore, hexameric structure. However, these channels are either non-functional or exhibit abnormal regulation and pharmacology, limiting their utility for structure-function analyses. We circumvented these limitations by developing novel homomeric LRRC8 chimeric channels with functional properties consistent with those of native VRAC/LRRC8 channels. We demonstrate here that the LRRC8C-LRRC8A(IL125) chimera comprising LRRC8C and 25 amino acids unique to the first intracellular loop (IL1) of LRRC8A has a heptameric structure like that of homologous pannexin channels. Unlike homomeric LRRC8A and LRRC8D channels, heptameric LRRC8C-LRRC8A(IL125) channels have a large-diameter pore similar to that estimated for native VRACs, exhibit normal DCPIB pharmacology, and have higher permeability to large organic anions. Lipid-like densities are located between LRRC8C-LRRC8A(IL125) subunits and occlude the channel pore. Our findings provide new insights into VRAC/LRRC8 channel structure and suggest that lipids may play important roles in channel gating and regulation.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
SARS-CoV-2 emergent variants are characterized by increased viral fitness and each shows multiple mutations predominantly localized to the spike (S) protein. Here, amide hydrogen/deuterium exchange mass spectrometry has been applied to track changes in S dynamics from multiple SARS-CoV-2 variants. Our results highlight large differences across variants at two loci with impacts on S dynamics and stability. A significant enhancement in stabilization first occurred with the emergence of D614G S followed by smaller, progressive stabilization in subsequent variants. Stabilization preceded altered dynamics in the N-terminal domain, wherein Omicron BA.1 S showed the largest magnitude increases relative to other preceding variants. Changes in stabilization and dynamics resulting from S mutations detail the evolutionary trajectory of S in emerging variants. These carry major implications for SARS-CoV-2 viral fitness and offer new insights into variant-specific therapeutic development.