Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau

  1. Brendan Cornwell  Is a corresponding author
  2. Katrina Armstrong
  3. Nia S Walker
  4. Marilla Lippert
  5. Victor Nestor
  6. Yimnang Golbuu
  7. Stephen R Palumbi
  1. Hopkins Marine Station of Stanford University, United States
  2. Palau International Coral Reef Center, Palau

Abstract

Climate change is dramatically changing ecosystem composition and productivity, leading scientists to consider the best approaches to map natural resistance and foster ecosystem resilience in the face of these changes. Here we present results from a large-scale experimental assessment of coral bleaching resistance, a critical trait for coral population persistence as oceans warm, in 221 colonies of the coral Acropora hyacinthus across 37 reefs in Palau. We find that bleaching resistant individuals inhabit most reefs but are found more often in warmer microhabitats. Our survey also found wide variation in symbiont concentration among colonies, and that colonies with lower symbiont load tended to be more bleaching resistant. By contrast, our data show that low symbiont load comes at the cost of lower growth rate, a tradeoff that may operate widely among corals across environments. Corals with high bleaching resistance have been suggested as a source for habitat restoration or selective breeding in order to increase coral reef resilience to climate change. Our maps show where these resilience corals can be found, but the existence of tradeoffs with heat resistance may suggest caution in unilateral use of this one trait in restoration.

Data availability

Temperature data have been deposited in the BCO-DMO database (https://www.bco-dmo.org/dataset/772445), all other data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Brendan Cornwell

    Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
    For correspondence
    bcornwel@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7839-8379
  2. Katrina Armstrong

    Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nia S Walker

    Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6314-0436
  4. Marilla Lippert

    Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Victor Nestor

    Research, Palau International Coral Reef Center, Koror, Palau
    Competing interests
    The authors declare that no competing interests exist.
  6. Yimnang Golbuu

    Director, Palau International Coral Reef Center, Koror, Palau
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen R Palumbi

    Department of Biology, Hopkins Marine Station of Stanford University, Pacific Grove, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (OCE-1736736)

  • Stephen R Palumbi

Stanford University Office of Development

  • Stephen R Palumbi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Meredith C Schuman, University of Zurich, Switzerland

Version history

  1. Preprint posted: April 28, 2020 (view preprint)
  2. Received: November 19, 2020
  3. Accepted: August 6, 2021
  4. Accepted Manuscript published: August 13, 2021 (version 1)
  5. Version of Record published: September 22, 2021 (version 2)

Copyright

© 2021, Cornwell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,101
    Page views
  • 292
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brendan Cornwell
  2. Katrina Armstrong
  3. Nia S Walker
  4. Marilla Lippert
  5. Victor Nestor
  6. Yimnang Golbuu
  7. Stephen R Palumbi
(2021)
Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau
eLife 10:e64790.
https://doi.org/10.7554/eLife.64790

Share this article

https://doi.org/10.7554/eLife.64790

Further reading

  1. Corals that are immune to bleaching tend to grow more slowly

    1. Ecology
    Luca Casiraghi, Francesco Mambretti ... Tommaso Bellini
    Research Article

    The understanding of eco-evolutionary dynamics, and in particular the mechanism of coexistence of species, is still fragmentary and in need of test bench model systems. To this aim we developed a variant of SELEX in vitro selection to study the evolution of a population of ∼1015 single-strand DNA oligonucleotide ‘individuals’. We begin with a seed of random sequences which we select via affinity capture from ∼1012 DNA oligomers of fixed sequence (‘resources’) over which they compete. At each cycle (‘generation’), the ecosystem is replenished via PCR amplification of survivors. Massive parallel sequencing indicates that across generations the variety of sequences (‘species’) drastically decreases, while some of them become populous and dominate the ecosystem. The simplicity of our approach, in which survival is granted by hybridization, enables a quantitative investigation of fitness through a statistical analysis of binding energies. We find that the strength of individual resource binding dominates the selection in the first generations, while inter- and intra-individual interactions become important in later stages, in parallel with the emergence of prototypical forms of mutualism and parasitism.