The transcription factor Rreb1 regulates epithelial architecture, invasiveness and vasculogenesis in early mouse embryos
Abstract
Ras-responsive element-binding protein 1 (Rreb1) is a zinc-finger transcription factor acting downstream of RAS signaling. Rreb1 has been implicated in cancer and Noonan-like RASopathies. However, little is known about its role in mammalian non-disease states. Here, we show that Rreb1 is essential for mouse embryonic development. Loss of Rreb1 led to a reduction in the expression of vasculogenic factors, cardiovascular defects and embryonic lethality. During gastrulation, the absence of Rreb1 also resulted in the upregulation of cytoskeleton-associated genes, a change in the organization of F-ACTIN and adherens junctions within the pluripotent epiblast, and perturbed epithelial architecture. Moreover, Rreb1 mutant cells ectopically exited the epiblast epithelium through the underlying basement membrane, paralleling cell behaviors observed during metastasis. Thus, disentangling the function of Rreb1 in development should shed light on its role in cancer and other diseases involving loss of epithelial integrity.
Data availability
Sequencing data have been deposited in GEO under accession codes GSE148514. Source data files for Figure 3 have been provided.
-
A single-cell molecular map of mouse gastrulation and early organogenesis.ArrayExpress, Atlas: E-MTAB-6967; Smart-seq2 endothelial cells: E-MTAB-6970; Tal1−/− chimaeras: E-MTAB-7325; wild-type chimaeras: E-MTAB-7324.
-
The emergent landscape of the mouse gut endoderm at single-cell resolutionGEO, GSE123046 (scRNA-seq), GSE123124.
Article and author information
Author details
Funding
Wellcome Trust (110151/Z/15/Z)
- Sophie M Morgani
National Institutes of Health (R01HD094868,R01DK084391,P30CA008748)
- Anna-Katerina Hadjantonakis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal experimentation: Animal experimentation: All mice used in this study were maintained in accordance with the guidelines of the Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee (IACUC) under protocol number 03-12-017 (PI Hadjantonakis).
Reviewing Editor
- Lilianna Solnica-Krezel, Washington University School of Medicine, United States
Publication history
- Received: November 11, 2020
- Accepted: April 16, 2021
- Accepted Manuscript published: April 30, 2021 (version 1)
- Version of Record published: May 18, 2021 (version 2)
- Version of Record updated: June 10, 2021 (version 3)
Copyright
© 2021, Morgani et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,607
- Page views
-
- 264
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Neuroscience
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron dysfunction and loss. A portion of ALS cases are caused by mutation of the proteasome shuttle factor Ubiquilin 2 (UBQLN2), but the molecular pathway leading from UBQLN2 dysfunction to disease remains unclear. Here, we demonstrate that UBQLN2 regulates the domesticated gag-pol retrotransposon 'paternally expressed gene 10' (PEG10) in human cells and tissues. In cells, the PEG10 gag-pol protein cleaves itself in a mechanism reminiscent of retrotransposon self-processing to generate a liberated 'nucleocapsid' fragment, which uniquely localizes to the nucleus and changes the expression of genes involved in axon remodeling. In spinal cord tissue from ALS patients, PEG10 gag-pol is elevated compared to healthy controls. These findings implicate the retrotransposon-like activity of PEG10 as a contributing mechanism in ALS through regulation of gene expression, and restraint of PEG10 as a primary function of UBQLN2.
-
- Cell Biology
Imaging endogenous mRNAs in live animals is technically challenging. Here, we describe an MS2-based signal amplification with the Suntag system that enables live-cell RNA imaging of high temporal resolution and with 8xMS2 stem-loops, which overcomes the obstacle of inserting a 1300 nt 24xMS2 into the genome for the imaging of endogenous mRNAs. Using this tool, we were able to image the activation of gene expression and the dynamics of endogenous mRNAs in the epidermis of live C. elegans.