Tachykinin signaling inhibits task-specific behavioral responsiveness in honeybee workers

  1. Bin Han
  2. Qiaohong Wei
  3. Fan Wu
  4. Han Hu
  5. Chuan Ma
  6. Lifeng Meng
  7. Xufeng Zhang
  8. Mao Feng
  9. Yu Fang
  10. Olav Rueppell  Is a corresponding author
  11. Jianke li
  1. Chinese Academy of Agricultural Science, China
  2. University of Alberta, Canada

Abstract

Behavioral specialization is key to the success of social insects and leads to division of labor among colony members. Response thresholds to task-specific stimuli are thought to proximally regulate behavioral specialization but their neurobiological regulation is complex and not well-understood. Here, we show that response thresholds to task-relevant stimuli correspond to the specialization of three behavioral phenotypes of honeybee workers in the well-studied and important Apis mellifera and Apis cerana. Quantitative neuropeptidome comparisons suggest two tachykinin-related peptides (TRP2 and TRP3) as candidates for the modification of these response thresholds. Based on our characterization of their receptor binding and downstream signaling, we confirm a functional role of tachykinin signaling in regulating specific responsiveness of honeybee workers: TRP2 injection and RNAi-mediated downregulation cause consistent, opposite effects on responsiveness to task-specific stimuli of each behaviorally specialized phenotype but not to stimuli that are unrelated to their tasks. Thus, our study demonstrates that TRP-signaling regulates the degree of task-specific responsiveness of specialized honeybee workers and may control the context-specificity of behavior in animals more generally.

Data availability

Original data have been deposited to ProteomeXchange Consortium with the dataset identifier PXD018713 under http://proteomecentral.proteomexchange.org or are provided as supplementary data files.

The following data sets were generated

Article and author information

Author details

  1. Bin Han

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6974-8699
  2. Qiaohong Wei

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Fan Wu

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7923-3808
  4. Han Hu

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Chuan Ma

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Lifeng Meng

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xufeng Zhang

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Mao Feng

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Yu Fang

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Olav Rueppell

    Biological Sciences, University of Alberta, Edmonton, Canada
    For correspondence
    olav@ualberta.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5370-4229
  11. Jianke li

    Chinese Academy of Agricultural Science, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Natural Science Foundation of China (31970428)

  • Bin Han

Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2015-IAR)

  • Jianke li

National Project for Upgrading the Beekeeping Industry of China

  • Jianke li

Modern Agro-Industry Technology Research System (CARS-44)

  • Jianke li

University of North Carolina at Greensboro

  • Olav Rueppell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,639
    views
  • 243
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bin Han
  2. Qiaohong Wei
  3. Fan Wu
  4. Han Hu
  5. Chuan Ma
  6. Lifeng Meng
  7. Xufeng Zhang
  8. Mao Feng
  9. Yu Fang
  10. Olav Rueppell
  11. Jianke li
(2021)
Tachykinin signaling inhibits task-specific behavioral responsiveness in honeybee workers
eLife 10:e64830.
https://doi.org/10.7554/eLife.64830

Share this article

https://doi.org/10.7554/eLife.64830

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Julie N Chuong, Nadav Ben Nun ... David Gresham
    Research Article

    Copy number variants (CNVs) are an important source of genetic variation underlying rapid adaptation and genome evolution. Whereas point mutation rates vary with genomic location and local DNA features, the role of genome architecture in the formation and evolutionary dynamics of CNVs is poorly understood. Previously, we found the GAP1 gene in Saccharomyces cerevisiae undergoes frequent amplification and selection in glutamine-limitation. The gene is flanked by two long terminal repeats (LTRs) and proximate to an origin of DNA replication (autonomously replicating sequence, ARS), which likely promote rapid GAP1 CNV formation. To test the role of these genomic elements on CNV-mediated adaptive evolution, we evolved engineered strains lacking either the adjacent LTRs, ARS, or all elements in glutamine-limited chemostats. Using a CNV reporter system and neural network simulation-based inference (nnSBI) we quantified the formation rate and fitness effect of CNVs for each strain. Removal of local DNA elements significantly impacts the fitness effect of GAP1 CNVs and the rate of adaptation. In 177 CNV lineages, across all four strains, between 26% and 80% of all GAP1 CNVs are mediated by Origin Dependent Inverted Repeat Amplification (ODIRA) which results from template switching between the leading and lagging strand during DNA synthesis. In the absence of the local ARS, distal ones mediate CNV formation via ODIRA. In the absence of local LTRs, homologous recombination can mediate gene amplification following de novo retrotransposon events. Our study reveals that template switching during DNA replication is a prevalent source of adaptive CNVs.

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.