Evolution of natural lifespan variation and molecular strategies of extended lifespan

  1. Alaattin Kaya  Is a corresponding author
  2. Cheryl Zi Jin Phua
  3. Mitchell Lee
  4. Lu Wang
  5. Alexander Tyshkovskiy
  6. Siming Ma
  7. Benjamin Barre
  8. Weiqiang Liu
  9. Benjamin R Harrison
  10. Xiaqing Zhao
  11. Xuming Zhou
  12. Brian M Wasko
  13. Theo K Bammler
  14. Daniel EL Promislow
  15. Matt Kaeberlein
  16. Vadim N Gladyshev  Is a corresponding author
  1. Virginia Commonwealth University, United States
  2. Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
  3. University of Washington, United States
  4. Brigham and Women's Hospital, Harvard Medical School, United States
  5. Chinese Academy of Sciences, Institute of Zoology, China
  6. Harvard medical school, United States
  7. University of Houston - Clear Lake, United States

Abstract

To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan. Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in replicative lifespan across wild yeast isolates, as well as genes, metabolites and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism and mitochondrial function in long-lived strains. Overall, our multi-omic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. RNA-seq data were deposited with the NCBI Gene Expression Omnibus (GEO) with accession number GSE188294.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alaattin Kaya

    Biology and Cancer Biology, Virginia Commonwealth University, Richmond, United States
    For correspondence
    kayaa@vcu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6132-5197
  2. Cheryl Zi Jin Phua

    Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
    Competing interests
    No competing interests declared.
  3. Mitchell Lee

    Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  4. Lu Wang

    Environmental and Occupational Health Sciences, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Alexander Tyshkovskiy

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Siming Ma

    Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
    Competing interests
    No competing interests declared.
  7. Benjamin Barre

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. Weiqiang Liu

    Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
    Competing interests
    No competing interests declared.
  9. Benjamin R Harrison

    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  10. Xiaqing Zhao

    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  11. Xuming Zhou

    Division of Genetics, Department of Medicine, Harvard medical school, Boston, United States
    Competing interests
    No competing interests declared.
  12. Brian M Wasko

    Biology, University of Houston - Clear Lake, Houston, United States
    Competing interests
    No competing interests declared.
  13. Theo K Bammler

    Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  14. Daniel EL Promislow

    Department of Lab Medicine & Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  15. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    Matt Kaeberlein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421
  16. Vadim N Gladyshev

    Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    For correspondence
    vgladyshev@rics.bwh.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0372-7016

Funding

National Institutes of Health (1K01AG060040)

  • Alaattin Kaya

National Institutes of Health (AG067782)

  • Vadim N Gladyshev

National Institutes of Health (AG064223)

  • Vadim N Gladyshev

National Institutes of Health (AG049494)

  • Daniel EL Promislow

National Institutes of Health (T32 AG052354)

  • Mitchell Lee

Nathan Shock Center-University of Washington (P30AG013280)

  • Alaattin Kaya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,038
    views
  • 466
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alaattin Kaya
  2. Cheryl Zi Jin Phua
  3. Mitchell Lee
  4. Lu Wang
  5. Alexander Tyshkovskiy
  6. Siming Ma
  7. Benjamin Barre
  8. Weiqiang Liu
  9. Benjamin R Harrison
  10. Xiaqing Zhao
  11. Xuming Zhou
  12. Brian M Wasko
  13. Theo K Bammler
  14. Daniel EL Promislow
  15. Matt Kaeberlein
  16. Vadim N Gladyshev
(2021)
Evolution of natural lifespan variation and molecular strategies of extended lifespan
eLife 10:e64860.
https://doi.org/10.7554/eLife.64860

Share this article

https://doi.org/10.7554/eLife.64860

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.

    1. Genetics and Genomics
    Daniel Patrick Gainey, Andrey V Shubin, Craig P Hunter
    Research Article

    We report our attempt to replicate reports of transgenerational epigenetic inheritance in Caenorhabditis elegans. Multiple laboratories report that C. elegans adults and their F1 embryos exposed to the pathogen Pseudomonas aeruginosa show pathogen aversion behavior and increased daf-7/TGFβ reporter gene expression. However, results from one group show persistence of both through the F4 generation. We failed to consistently detect either the avoidance response or elevated daf-7 expression beyond the F1 generation. We confirmed that the dsRNA transport proteins SID-1 and SID-2 are required for intergenerational (F1) inheritance of pathogen avoidance, but not for the F1 inheritance of elevated daf-7 expression. Reanalysis of RNA seq data provides additional evidence that this intergenerational inherited PA14 response may be mediated by small RNAs. The experimental methods are well-described, the source materials are readily available, including samples from the reporting laboratory, and we explored a variety of environmental conditions likely to account for lab-to-lab variability. None of these adjustments altered our results. We conclude that this example of transgenerational inheritance lacks robustness, confirm that the intergenerational avoidance response, but not the elevated daf-7p::gfp expression in F1 progeny, requires sid-1 and sid-2, and identify candidate siRNAs and target genes that may mediate this intergenerational response.